Package: MultiGroupSequential (via r-universe)

October 30, 2024

Type Package
Version 1.0.0
Date 2022-03-31
Title Group-Sequential Procedures with Multiple Endpoints
Description Provides various testing procedures for group-sequential trials with multiple endpoints. Two sets of procedures are provided.
Depends R (>= $4.0.0$)
Imports stats, rpact, gMCP, mvtnorm, OpenMx, hommel, minidown
License GPL (>= 2)
RoxygenNote 7.1.2
LazyData true
Suggests knitr, rmarkdown
VignetteBuilder knitr
Repository https://marvels2031.r-universe.dev
RemoteUrl https://github.com/marvels2031/multigroupsequential
RemoteRef HEAD
RemoteSha 0c9e830c268337fdaf57f76910ef96f4d0647a20
Contents
MultiGroupSequential-package

xccalgsp...xccalgspcor...xccalgspsim...xccalgspsim1...

2 crosslist

xccrit		 			•											9
xcmaurerbre	etz	 	 													10
xcseqgxgs .		 	 													11
xcseqhh		 	 													12
xcseqhhgs .		 	 										 			13
xcspending		 	 													14

Index 16

MultiGroupSequential-package

Group-Sequential Procedures with Multiple Endpoints

Description

Provides various testing procedures for group-sequential trials with multiple endpoints. Two sets of procedures are provided.

Details

The DESCRIPTION file: This package was not yet installed at build time.

Index: This package was not yet installed at build time.

Author(s)

Xiaodong Luo [aut, cre], Hui Quan [ctb], Sanofi [cph] Maintainer: Xiaodong Luo <Xiaodong.Luo@sanofi.com>

References

Luo (2022)

crosslist

Cross list all the scenarios

Description

Cross list all the scenarios

Usage

```
crosslist(b=list(a1=c(2,3),a2=c(2,4),a3=c(0,1)))
```

hxhochberg 3

Arguments

b A list of lists

Value

df dataframe consisting of all the scenarios row by row

Author(s)

Xiaodong Luo

Examples

hxhochberg

Hochberg procedure with different alphas for different endpoints

Description

Hochberg procedure with different alphas for different endpoints

Usage

```
hxhochberg(pvalues,alpha,epsilon=1.0e-10,precision=10)
```

Arguments

pvalues p-values from different endpoints

alpha same length as pvalues with (different) alphas for different endpoints

epsilon lower bound for the alpha precision precision of the values

Details

This procedure handles Hochberg procedure with different alphas for different endpoints

Value

decisions an index of rejected hypoetheses

Author(s)

Xiaodong Luo

4 hxhommel

Examples

hxhochberg(pvalues=runif(5), alpha=seq(0.01, 0.025, len=5), epsilon=1.0e-10, precision=10)

hxhomme1

Hommel procedure with different alphas for different endpoints

Description

Hommel procedure with different alphas for different endpoints

Usage

hxhommel(pvalues,alpha,epsilon=1.0e-10,precision=10)

Arguments

pvalues p-values from different endpoints

alpha same length as pvalues with (different) alphas for different endpoints

epsilon lower bound for the alpha

precision precision of the values, obsolete for backward compatibility

Details

It turns out [hommel](https://cran.r-project.org/web/packages/hommel/) can handle Hommel procedure with different alpha's for different endpoints, the function 'hxhommel' is just a wrapper function.

Value

decisions an index of rejected hypotheses

Author(s)

Xiaodong Luo

Examples

 $\label{localization} hxhommel(pvalues=runif(5),alpha=seq(0.01,0.025,len=5),epsilon=1.0e-10,precision=10)$

xccalgsp 5

xccalgsp	Calculate group-sequential p-values	

Description

This will calculate group-sequential p-values

Usage

Arguments

xm a matrix of test statistics for each endpoint (in row) and each interim (in column)

alpham a matrix of alpha spending for the statistics xm

informationm a matrix of information fractions for the statistics xm

direction -1: (one-sided)reject if test stat is smaller than or equal to the critical value;

1: (one-sided)reject if test stat is greater than or equal to the critical value; 0: (two-sided)reject if the absolute value of the test stat is greater than the critical

value

Value

pm group-sequential p-values

critm critical values

Author(s)

Xiaodong Luo

Examples

6 xccalgspcor

xccalgspcor Calculate group-sequential p-values given the correlation matrix of the test statistics	xccalgspcor	Calculate group-sequential p-values given the correlation matrix of the test statistics
---	-------------	---

Description

This will calculate group-sequential p-values given the correlation matrix of the test statistics

Usage

```
 \begin{array}{c} xccalgspcor(xm=qnorm(c(0.03,0.04,0.01)),\\ alpham=c(0.02,0.03,0.05),\\ corrm=diag(length(xm)),direction=-1,tol=1e-10) \end{array}
```

Arguments

xm a vector of test statistics at each analysis
alpham a vector of alpha spending for the statistics xm

corrm correlation matrix of the statistics xm

direction -1: (one-sided)reject if test stat is smaller than or equal to the critical value;

1: (one-sided)reject if test stat is greater than or equal to the critical value; 0: (two-sided)reject if the absolute value of the test stat is greater than the critical

value

tol accuracy tolerance when calculating the quantiles

Value

pm group-sequential p-values

critm critical values

Author(s)

Xiaodong Luo

Examples

```
xm=qnorm(matrix(rep(c(0.03,0.04,0.01),times=2),ncol=3,nrow=2))
ir=c(0.4,0.8,1)
corrm=diag(length(ir))
for (i in 1:length(ir))for(j in 1:length(ir))corrm[i,j]=sqrt(ir[pmin(i,j)]/ir[pmax(i,j)])
xccalgsp(xm=xm)$critm[1,]
xccalgspsim(xm=xm)$critm[1,]
xccalgspcor(xm=xm[1,],corrm=corrm)$critm
```

xccalgspsim 7

xccalgspsim	Calculate group-sequential p-values via simulation

Description

This will calculate group-sequential p-values via simulation

Usage

```
 \label{eq:coalgspsim} $$xccalgspsim(xm=qnorm(matrix(rep(c(0.03,0.04,0.01),times=2),ncol=3,nrow=2)), $$ alpham=matrix(rep(c(0.02,0.03,0.05),each=2),ncol=3,nrow=2), $$ informationm=matrix(rep(c(0.4,0.8,1),each=2),ncol=3,nrow=2), $$ r.seed=rep(17,2),nsample=1e+6,direction=-1) $
```

Arguments

xm a matrix of test statistics for each endpoint (in row) and each interim (in column)

alpham a matrix of alpha spending for the statistics xm

informationm a matrix of information fractions for the statistics xm

r.seed random seeds for each endpoints

nsample number of random samples

direction -1: (one-sided)reject if test stat is smaller than or equal to the critical value;

1: (one-sided)reject if test stat is greater than or equal to the critical value; 0: (two-sided)reject if the absolute value of the test stat is greater than the critical

value

Value

pm group-sequential p-values

critm critical values

Note

This provides the calculation for the group-sequential p-values in case there is an issue in using rpact package.

Author(s)

Xiaodong Luo

8 xccalgspsim1

Examples

```
xm=qnorm(matrix(rep(c(0.03,0.04,0.01),times=4),ncol=3,nrow=4))
im=matrix(rep(c(0.4,0.8,1),each=4),ncol=3,nrow=4)
alpham=matrix(0,nrow=4,ncol=3)
for (i in 1:4){
    alpham[i,]=xcspending(alpha=0.025,fractions=im[i,],family="OBF",rho=(i+1)/2)$aseq
}
xccalgspsim(xm=xm,alpham=alpham,informationm=im,r.seed=rep(17,4),direction=-1)
```

xccalgspsim1

Calculate group-sequential p-values via simulation

Description

This utility function will be called by function "xccalgspsim" to calculate group-sequential p-values via simulation for single endpoint

Usage

Arguments

xm test statistics
alpham alpha spending
informationm information fractions

r.seed random seed

nsample number of random samples

direction -1: (one-sided)reject if test stat is smaller than or equal to the critical value;

1: (one-sided)reject if test stat is greater than or equal to the critical value; 0: (two-sided)reject if the absolute value of the test stat is greater than the critical

value

Value

crit.value critical values

p.value.gs group-sequential p-values

xm test statisticsalpham alpha spending

informationm information fractions

xccrit 9

Note

This provides the calculation for the group-sequential p-values in case there is an issue in using rpact package.

Author(s)

Xiaodong Luo

Examples

xccrit

Calculate critical values

Description

This utility function calculates the critical values

Usage

```
 \begin{tabular}{ll} xccrit(direction=-1,alpha=0.025,informationRates=c(0.4,0.7,1),\\ userAlphaSpending=c(0.01,0.015,0.025),alpha.low=1e-10) \end{tabular}
```

Arguments

direction

-1: (one-sided)reject if test stat is smaller than or equal to the critical value; 1: (one-sided)reject if test stat is greater than or equal to the critical value; 0: (two-sided)reject if the absolute value of the test stat is greater than the critical

value

alpha overall familywise error rate

informationRates

information fractions

userAlphaSpending

alpha spent at each interim

alpha.low default is 1e-10, if allocated alpha is smaller than this number, the corresponding

critical value will be set to infinity

Value

crit critical values

10 xcmaurerbretz

Author(s)

Xiaodong Luo

Examples

xcmaurerbretz

Maurer-Bretz sequential graphical approach

Description

This will conduct group-sequential testing for multiple endpoints based on Maurer-Bretz approach

Usage

Arguments

a matrix of test statistics for each endpoint (in row) and each interim (in column)

informationm a matrix of information fractions for the statistics xm

spending spending functions for each endpoint param. spending parameters in the spending functions

alpha overall familywise error rate

direction -1: (one-sided)reject if test stat is smaller than or equal to the critical value;

1: (one-sided)reject if test stat is greater than or equal to the critical value; 0: (two-sided)reject if the absolute value of the test stat is greater than the critical

value

graphin a graph object generated from gMCP

alpha.low default is 1e-10, if allocated alpha is smaller than this number, the corresponding

critical value will be set to infinity

retrospective retrospective: 0 (default) only compares the current test statistic with the up-

dated critical value, 1 compares all the test statistics up to the current one with the updated critical values. Even though retrospective looking at the values is statistically valid in terms of control of the type-1 error rate, no retrospective looking at the past comparisons avoids the dilemma of retrospectively increas-

ing the alpha level for the un-rejected hypothesis in the past

xcseqgxgs 11

Value

Hrej rejected hypotheses

rejected the index set of rejected hypotheses

decisionsm rejection decision for each endpoint (row) at each timepoint (column)

cumdecisionsm cumulative rejection decision for each endpoint (row) at each timepoint (col-

umn)

Author(s)

Xiaodong Luo

Examples

xcseqgxgs Sequential graphical procedure for multiple endpoints based on

group-sequential p-values

Description

Sequential graphical procedure for multiple endpoints based on group-sequential p-values

Usage

Arguments

pm a matrix of group-sequential p-values for different endpoints (in row) at different

times (in column)

alpha overall familywise error rate

graph in graph to be used, this is graph object defined by the gMCP package

12 xcseqhh

Value

rejected the index set of rejected hypotheses

decisionsm rejection decision for each endpoint (row) at each timepoint (column)

cumulative rejection decision for each endpoint (row) at each timepoint (col-

umn)

Note

This provides the calculation for the variance.

Author(s)

Xiaodong Luo

Examples

```
Sys.setenv(JAVA_HOME="C:/Program Files/Java/jdk-17.0.2/") library(gMCP) pm=matrix(rep(c(0.03,0.04,0.01),times=2),ncol=3,nrow=2) graphin=gMCP::BonferroniHolm(2) xcseqgxgs(pm=pm,alpha=0.025,graphin=graphin)
```

Sequential Hochberg/Hommel procedure for multiple endpoints based on q-values

xcseqhh

Description

Sequential Hochberg/Hommel procedure for multiple endpoints based on q-values

Usage

Arguments

pm a matrix of group-sequential p-values for different endpoints (in row) at different

times (in column)

alpham a matrix of alpha spending corresponding to the p-values pm

epsilon lower bound for the alpha precision precision of the values method "Hochberg" or "Hommel" xcseqhhgs 13

Value

rejected the index set of rejected hypotheses

decisionsm rejection decision for each endpoint (row) at each timepoint (column)

cumulative rejection decision for each endpoint (row) at each timepoint (col-

umn)

alpha levels actually used for each endpoint (row) at each timepoint (column)

Note

This provides the calculation for the variance.

Author(s)

Xiaodong Luo

Examples

```
\label{eq:pmmatrix} $$ pm=matrix(rep(c(0.03,0.04,0.01),times=2),ncol=3,nrow=2) $$ alpham=matrix(rep(c(0.02,0.03,0.05),each=2),ncol=3,nrow=2) $$ xcseqhh(pm=pm,alpham=alpham,method="Hochberg") $$ xcseqhh(pm=pm,alpham=alpham,method="Hommel") $$
```

xcseqhhgs Sequential Hochberg/Hommel procedure for multiple endpoints based

on group-sequential p-values

Description

Sequential Hochberg/Hommel procedure for multiple endpoints based on group-sequential p-values

Usage

```
xcseqhhgs(pm=matrix(rep(c(0.03,0.04,0.01),times=2),ncol=3,nrow=2), alpha=0.025,epsilon=1.0e-10,precision=10,method='Hochberg')
```

Arguments

pm a matrix of group-sequential p-values for different endpoints (in row) at different

times (in column)

alpha overall familywise error rate
epsilon lower bound for the alpha
precision precision of the values
method "Hochberg" or "Hommel"

14 xcspending

Value

rejected the index set of rejected hypotheses

decisionsm rejection decision for each endpoint (row) at each timepoint (column)

cumulative rejection decision for each endpoint (row) at each timepoint (col-

umn)

Note

This provides the calculation for the variance.

Author(s)

Xiaodong Luo

Examples

```
pm=matrix(rep(c(0.03,0.04,0.01),times=2),ncol=3,nrow=2)
xcseqhhgs(pm=pm,alpha=0.025,method="Hochberg")
xcseqhhgs(pm=pm,alpha=0.025,method="Hommel")
```

xcspending

Calculate alpha spending

Description

This utility function calculates alpha spending. Note that the OBF and Pocock spending functions are not the originally proposed ones, they are the modified ones that are closely resemble the original versions. That being said, you might still see some differences

Usage

```
xcspending(alpha,fractions=seq(0.2,1,by=0.2),family="OBF",rho=1)
```

Arguments

alpha overall familywise error rate

fractions information fractions

family family of spending functions, one of "OBF", "pocock", "power"

rho parameter of the spending function

Details

OBF:
$$2\{1 - \Phi(\Phi^{-1}(1 - \alpha/2)/t^{\rho/2})\}$$
; pocock: $\alpha \log\{1 + (e - 1) * t\}$; power: $\alpha * t^{\rho}$

Value

aseq alpha spending

xcspending 15

Author(s)

Xiaodong Luo

Examples

xcspending(alpha=0.025, fractions=seq(0.2,1,by=0.2), family="OBF", rho=1)

Index

* Hochberg procedure	${\tt MultiGroupSequential-package}, 2$
hxhochberg, 3	* multiplicity control
* Hochberg	${\sf MultiGroupSequential-package}, 2$
xcseqhh, 12	* q-values
xcseqhhgs, 13	xcseqhh, 12
* Hommel procedure	11
hxhommel, 4	crosslist, 2
* Hommel	hxhochberg, 3
xcseqhh, 12	hxhommel, 4
xcseqhhgs, 13	TIXTOHIHET, 4
* Maurer-Bretz	MultiGroupSequential
xcmaurerbretz, 10	(MultiGroupSequential-package),
* alpha spending	2
xcspending, 14	MultiGroupSequential-package, 2
* critical values	, , , , , , , , , , , , , , , , , , , ,
xccrit,9	xccalgsp, 5
xcspending, 14	xccalgspcor, 6
* cross listing	xccalgspsim, 7
crosslist, 2	xccalgspsim1,8
* efficacy boundary	xccrit, 9
xccrit,9	xcmaurerbretz, 10
xcspending, 14	xcseqgxgs, 11
* graphical procedure	xcseqhh, 12
xcmaurerbretz, 10	xcseqhhgs, 13
* group-sequential p-values	xcspending, 14
xccalgsp, 5	
xccalgspcor, 6	
xccalgspsim, 7	
xccalgspsim1,8	
xcseqhhgs, 13	
* group-sequential	
MultiGroupSequential-package, 2	
xccrit,9	
xcmaurerbretz, 10	
xcseqgxgs, 11	
xcseqhh, 12	
xcseqhhgs, 13	
xcspending, 14	
* multiple endpoints	