Package: PWEALL (via r-universe)

October 8, 2024

Type Package

Version 1.3.0.1

Date 2018-10-18

- Title Design and Monitoring of Survival Trials Accounting for Complex Situations
- Description Calculates various functions needed for design and monitoring survival trials accounting for complex situations such as delayed treatment effect, treatment crossover, non-uniform accrual, and different censoring distributions between groups. The event time distribution is assumed to be piecewise exponential (PWE) distribution and the entry time is assumed to be piecewise uniform distribution. As compared with Version 1.2.1, two more types of hybrid crossover are added. A plecewise exponential (FWE) distribution and the entry time
assumed to be piecewise uniform distribution. As compared
Version 1.2.1, two more types of hybrid crossover are added
bug is corrected in the function ``pwecx" th crossover-adjusted survival, distribution, density, hazard and cumulative hazard functions. Also, to generate the crossover-adjusted event time random variable, a more efficient algorithm is used and the output includes crossover indicators.

Depends R ($>= 3.1.2$)

Imports survival, stats

License GPL $(>= 2)$

RoxygenNote 5.0.1

NeedsCompilation yes

Author Xiaodong Luo [aut, cre], Xuezhou Mao [ctb], Xun Chen [ctb], Hui Quan [ctb], Sanofi [cph]

Maintainer Xiaodong Luo <Xiaodong.Luo@sanofi.com>

Date/Publication 2023-08-09 04:33:51 UTC

Repository https://marvels2031.r-universe.dev

RemoteUrl https://github.com/cran/PWEALL

RemoteRef HEAD

RemoteSha d4c6df009fc16ab16ceb1cb5cae9cabde76dadac

Contents

PWEALL-package *Design and Monitoring of Survival Trials Accounting for Complex Situations*

Description

Calculates various functions needed for design and monitoring survival trials accounting for complex situations such as delayed treatment effect, treatment crossover, non-uniform accrual, and different censoring distributions between groups. The event time distribution is assumed to be piecewise exponential (PWE) distribution and the entry time is assumed to be piecewise uniform distribution. As compared with Version 1.2.1, two more types of hybrid crossover are added. A bug is corrected in the function "pwecx" that calculates the crossover-adjusted survival, distribution, density, hazard and cumulative hazard functions. Also, to generate the crossover-adjusted event time random variable, a more efficient algorithm is used and the output includes crossover indicators.

Details

The DESCRIPTION file:

Index of help topics:

PWEALL-package 5

There are 5 types of crossover considered in the package: (1) Markov crossover, (2) Semi-Markov crosover, (3) Hybrid crossover-1, (4) Hybrid crossover-2 and (5) Hybrid crossover-3. The first 3 types are described in Luo et al. (2018). The fourth and fifth types are added for Version 1.3.0. The crossover type is determined by the hazard function after crossover $\lambda_2^{\mathbf{x}}(t \mid u)$. For Type (1), the Markov crossover,

 $\lambda_2^{\mathbf{x}}(t \mid u) = \lambda_2(t).$

For Type (2), the Semi-Markov crossover,

$$
\lambda_2^{\mathbf{x}}(t \mid u) = \lambda_2(t - u).
$$

For Type (3), the hybrid crossover-1,

$$
\lambda_2^{\mathbf{x}}(t \mid u) = \pi_2 \lambda_2(t - u) + (1 - \pi_2) \lambda_4(t).
$$

For Type (4), the hazard after crossover is

$$
\lambda_2^{\mathbf{x}}(t \mid u) = \frac{\pi_2 \lambda_2(t - u) S_2(t - u) + (1 - \pi_2) \lambda_4(t) S_4(t) / S_4(u)}{\pi_2 S_2(t - u) + (1 - \pi_2) S_4(t) / S_4(u)}.
$$

.

For Type (5), the hazard after crossover is

$$
\lambda_2^{\mathbf{x}}(t \mid u) = \frac{\pi_2 \lambda_2(t - u) S_2(t - u) + (1 - \pi_2) \lambda_4(t - u) S_4(t - u)}{\pi_2 S_2(t - u) + (1 - \pi_2) S_4(t - u)}
$$

The types (4) and (5) are more closely related to "re-randomization", i.e. when a patient crosses, (s)he will have probability π_2 to have hazard λ_2 and probability $1-\pi_2$ to have hazard λ_4 . The types (4) and (5) differ in having λ_4 as Markov or Semi-markov.

Author(s)

Xiaodong Luo [aut, cre], Xuezhou Mao [ctb], Xun Chen [ctb], Hui Quan [ctb], Sanofi [cph] Maintainer: Xiaodong Luo <Xiaodong.Luo@sanofi.com>

References

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

cp *Conditional power given observed log hazard ratio*

Description

This will calculate the conditional power given the observed log hazard ratio based on Cox model

Usage

```
cp(Dplan=300,alpha=0.05,two.sided=1,pi1=0.5,Obsbeta=log(seq(1,0.6,by=-0.01)),
   BetaD=log(0.8),Beta0=log(1),prop=seq(0.1,0.9,by=0.1))
```
Arguments

Details

This is to calculated conditional power at time point when certain percent of target number of event has been observed and an observed log hazard ratio is provided.

cpboundary 7

Value

Note

This will calculate the conditional power given the observed log hazard ratio based on Cox model

Author(s)

Xiaodong Luo

References

Halperin, Lan, Ware, Johnson and DeMets (1982). Controlled Clinical Trials.

See Also

[cpboundary](#page-6-1),[cpstop](#page-8-1)

Examples

```
###Calculate the CP at 10-90 percent of the target 300 events when the observed HR
###are seq(1,0.6,by=-0.01) with 2:1 allocation
###ratio between the treatment group and the control group
cp(pi1=2/3)
```


cpboundary *The stopping boundary based on the conditional power criteria*

Description

This will calculate the stopping boundary based on the conditional power criteria, i.e. if observed HR is above the boundary, the conditional power will be lower than the designated level. All the calculation is based on the proportional hazards assumption and the Cox model.

Usage

```
cpboundary(Dplan=300,alpha=0.05,two.sided=1,pi1=0.5,cpcut=c(0.2,0.3,0.4),
           BetaD=log(0.8),Beta0=log(1),prop=seq(0.1,0.9,by=0.1))
```
Arguments

Details

This will calculate the stopping boundary based on the conditional power criteria, i.e. if observed HR is above the boundary, the conditional power will be lower than the designated level. All the calculation is based on the proportional hazards assumption and the Cox model.

Value

Note

This will calculate the stopping boundary based on the conditional power criteria

Author(s)

Xiaodong Luo

References

Halperin, Lan, Ware, Johnson and DeMets (1982). Controlled Clinical Trials.

See Also

[cp](#page-5-1),[cpstop](#page-8-1)

Examples

###Calculate the stopping boundary at 10-90 percent of the target 300 events ###when the condition power are c(0.2,0.3,0.4) with ###2:1 allocation ratio between the treatment group and the control group cpboundary(pi1=2/3)

Description

This will calculate the stopping probability given the stopping boundary. All the calculation is based on the proportional hazards assumption and the Cox model.

Usage

```
cpstop(Dplan=300,pi1=0.5,Beta1=log(0.8),Beta0=log(1),
       prop=seq(0.1,0.9,by=0.1),HRbound=rep(0.85,length(prop)))
```
Arguments

Details

This will calculate the stopping probability given the stopping boundary. All the calculation is based on the proportional hazards assumption and the Cox model.

Value

Note

This will calculate the stopping probability given the stopping boundary

Author(s)

Xiaodong Luo

References

Halperin, Lan, Ware, Johnson and DeMets (1982). Controlled Clinical Trials.

See Also

[cp](#page-5-1),[cpboundary](#page-6-1)

Examples

```
###Calculate the stopping boundary at 10-90 percent of the target 300 events
###when the condition power are c(0.2,0.3,0.4) with 2:1 allocation ratio
###between the treatment group and the control group, we pick the boundary
###based on 20 percent conditional power according to design, i.e. under alternative
targetD<-800 ###target number of events at study end
#############Allocation prob for the treatment group#############
pi1<-2/3
propevent<-seq(0.1,0.9,by=0.1) ###proportion of events at interim
HRbound<-cpboundary(Dplan=targetD,pi1=pi1,prop=propevent)$CPDbound[,1] ###picking a boundary
pa<-cpstop(pi1=pi1,HRbound=HRbound) ###stopping probabilities under null and alternative
pa
###Calculate the stopping probability under non-constant hazard ratio
n1<-length(propevent)
####time point at which hazard rates and hazard ratios change
tchange<-c(0,6,12,24)
###annual event rates=0.09(1st yr), 0.07(2nd yr) and 0.05(2+yr) for control
ratet<-c(0.09/12,0.09/12,0.07/12,0.05/12)
###annual censoring rate=0%(1st yr) and 1.5%(after) for control and treatment
```

```
ratec0<-c(0/12,0/12,0.015/12,0.015/12)
ratec1<-ratec0
###annual treatment discontinuation rate=4% (1st yr) and 3% (after)
rate31<-c(0.04/12,0.04/12,0.03/12,0.03/12)
rate30<-rep(0,length(tchange))
```

```
############Recruitment curve##################
oa<-c(100,200,300,300,400,400,400,400,400,400,400,400,300,200)
ntotal<-sum(oa)
ntotal
```

```
taur<-length(oa)
ut<-seq(1,taur,by=1)
u<-oa/ntotal
```

```
#############Type-1 error rate#############
alpha<-0.05
```

```
####null hypothesis
eta<sup><-log(1)</sup>
```
####constant HR etac<-log(0.8)

```
####non-constant HR
eta<-c(log(1),log(0.75),log(0.75),log(0.75)) ###6-m delayed
```
####target number of events where calculations are performed############## sevent<-propevent*targetD

fourhr 11

```
nse<-length(sevent)
xtimeline<-xbeta<-xvar<-pxstop<-matrix(0,ncol=2,nrow=nse)
xtimeline[,1]<-xbeta[,1]<-xvar[,1]<-pxstop[,1]<-sevent
i < -1tbegin<-proc.time()
for (i in 1:nse){
###find timeline
xtimeline[i,2]<-pwecxpwufindt(target=sevent[i],ntotal=ntotal,
                taur=taur,u=u,ut=ut,pi1=0.5,
               rate11=exp(eta)*ratet,rate21=exp(eta)*ratet,rate31=rate31,ratec1=ratec1,
                rate10=ratet,rate20=ratet,rate30=rate30,ratec0=ratec0,
                tchange=tchange,eps=0.001,init=taur,epsilon=0.000001,maxiter=100)$tau1
#Overall hazard ratio and varaince
xbeta[i,2]<-ovbeta(tfix=xtimeline[i,2],taur=taur,u=u,ut=ut,pi1=pi1,
               rate11=exp(eta)*ratet,rate21=exp(eta)*ratet,rate31=rate31,ratec1=ratec1,
                rate10=ratet,rate20=ratet,rate30=rate30,ratec0=ratec0,
                tchange=tchange,eps=0.001,veps=0.001,epsbeta=1.0e-10)$b1
xvar[i,2]<-overallvar(tfix=xtimeline[i,2],taur=taur,u=u,ut=ut,pi1=pi1,
               rate11=exp(eta)*ratet,rate21=exp(eta)*ratet,rate31=rate31,ratec1=ratec1,
                rate10=ratet,rate20=ratet,rate30=rate30,ratec0=ratec0,
                tchange=tchange,eps=0.001,veps=0.001,beta=xbeta[i,2])$vbeta
}
##stopping prob
pxstop[,2]<-1-pnorm(sqrt(ntotal)*(log(HRbound)-xbeta[,2])/sqrt(xvar[,2]))
tend<-proc.time()
xout<-cbind(xtimeline[,1],xtimeline[,2],xbeta[,2],xvar[,2]/ntotal,
            1/pi1/(1-pi1)/xtimeline[,1],pxstop[,2],pa$pstop0,pa$pstop1)
xnames<-c("# of events", "Time", "Estbeta", "TrueV", "ApproxV", "NCHR", "Null", "CHR")
colnames(xout)<-xnames
options(digits=2)
xout
```
fourhr *A utility functon*

Description

This will calculate the more complex integration

Usage

```
fourhr(t=seq(0,5,by=0.5),rate1=c(0,5,0.8),rate2=rate1,
                   rate3=c(0.1,0.2),rate4=rate2,tchange=c(0,3),eps=1.0e-2)
```


Details

Let h_1, \ldots, h_4 correspond to rate1,...,rate4, and H_1, \ldots, H_4 be the corresponding survival functions. We calculate

$$
\int_0^t h_1(s)H_2(s)h_3(t-s)H_4(t-s)ds.
$$

Value

fx values

Note

This provides the result of the complex integration

 \cdot

Author(s)

Xiaodong Luo

References

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

See Also

[rpwe](#page-76-1)

Examples

```
r1 < -c(0.6, 0.3)r2 < -c(0.6, 0.6)r3<-c(0.1,0.2)
r4 < -c(0.5, 0.4)tchange<-c(0,1.75)
fourhrfun<-fourhr(t=seq(0,5,by=0.5),rate1=r1,rate2=r2,rate3=r3,
                  rate4=r4,tchange=c(0,3),eps=1.0e-2)
```
fourhrfun

Description

A function to calculate the beta-smoothed hazard rate

Usage

```
hxbeta(x=c(0.5,1),y=seq(.1,1,by=0.01),d=rep(1,length(y)),
           tfix=2,K=20,eps=1.0e-06)
```
Arguments

Details

V1:3/21/2018

Value

lambda estimated hazard at points x

Author(s)

Xiaodong Luo

Examples

```
n<-200
taur<-2.8
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
tfix<-taur+2
tseq<-seq(0,tfix,by=0.1)
r11<-c(1,0.5)r21<-c(0.5,0.8)
r31<-c(0.7,0.4)
r41<-r51<-r21
rc1 < -c(0.5, 0.6)tchange<-c(0,1.873)
```
14 innercov

```
E<-T<-C<-d<-rep(0,n)
E<-rpwu(nr=n,u=u,ut=ut)$r
C<-rpwe(nr=n,rate=rc1,tchange=tchange)$r
T<-rpwecx(nr=n,rate1=r11,rate2=r21,rate3=r31,
              rate4=r41,rate5=r51,tchange=tchange,type=1)$r
y<-pmin(pmin(T,C),tfix-E)
y1<-pmin(C,tfix-E)
d[T<=y]<-1
lambda=hxbeta(x=tseq,y=y,d=d,tfix=tfix,K=20,eps=1.0e-06)$lambda
lambda
```
innercov *A utility function to calculate the inner integration of the overall covariance*

Description

This will calculate the inner integration of the overall covariance accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

```
innercov(tupp=seq(0,10,by=0.5),tlow=tupp-0.1,taur=5,
                  u=c(1/taur,1/taur),ut=c(taur/2,taur),pi1=0.5,
                   rate11=c(1,0.5),rate21=rate11,rate31=c(0.7,0.4),
                   rate41=rate21,rate51=rate21,ratec1=c(0.5,0.6),
                   rate10=rate11,rate20=rate10,rate30=rate31,
                   rate40=rate20,rate50=rate20,ratec0=ratec1,
                   tchange=c(0,1),type1=1,type0=1,rp21=0.5,rp20=0.5,
                   eps=1.0e-2,veps=1.0e-2,beta=0)
```


innercov and the contract of t

Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^{m} \lambda_j I(t_{j-1} \leq t < t_j)$, where $\lambda_1, \dots, \lambda_m$ are the corresponding elements of the rates and t_0, \ldots, t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

Value

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

References

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

See Also

[pwe](#page-35-1),[rpwe](#page-76-1),[qpwe](#page-62-1),[pwecx](#page-36-1),[ovbeta](#page-22-1),[innervar](#page-15-1)

Examples

```
taur < -1.2u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11<-c(1,0.5)r21 < -c(0.5, 0.8)r31<-c(0.7,0.4)
r41<-r51<-r21
rc1<-c(0.5,0.6)
r10<-c(1,0.7)r20 < -c(0.5, 1)r30<-c(0.3,0.4)
r40<-r50<-r20
rc0<-c(0.2,0.4)
getinner<-innercov(tupp=rep(5,times=11),tlow=seq(0,5,by=0.5),taur=taur,u=u,ut=ut,pi1=0.5,
                     rate11=r11,rate21=r21,rate31=r31,
                     rate41=r41,rate51=r51,ratec1=rc1,
                     rate10=r10,rate20=r20,rate30=r30,
                     rate40=r40,rate50=r50,ratec0=rc0,
                     tchange=c(0,1),type1=1,type0=1,eps=1.0e-2,veps=1.0e-2,beta=0.5)
cbind(getinner$qf1,getinner$qf0)
```
innervar *A utility function to calculate the inner integration of the overall variance*

Description

This will calculate the inner integration of the overall variance accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

```
innervar(t=seq(0,10,by=0.5),taur=5,u=c(1/taur,1/taur),ut=c(taur/2,taur),pi1=0.5,rate11=c(1,0.5),rate21=rate11,rate31=c(0.7,0.4),
                     rate41=rate21,rate51=rate21,ratec1=c(0.5,0.6),
                     rate10=rate11,rate20=rate10,rate30=rate31,
                     rate40=rate20,rate50=rate20,ratec0=c(0.6,0.5),
                     tchange=c(0,1), type1=1, type0=1,
```
innervar til 17

rp21=0.5,rp20=0.5, eps=1.0e-2,veps=1.0e-2,beta=0)

Arguments

Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^{m} \lambda_j I(t_{j-1} \le t < t_j)$, where $\lambda_1, \dots, \lambda_m$ are the corresponding elements of the rates and t_0, \ldots, t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

18 innervar

Value

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

References

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

See Also

[pwe](#page-35-1),[rpwe](#page-76-1),[qpwe](#page-62-1),[pwecx](#page-36-1),[ovbeta](#page-22-1),[innervar](#page-15-1)

Examples

```
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11<-c(1,0.5)r21<-c(0.5,0.8)
r31<-c(0.7,0.4)
r41<-r51<-r21
rc1<-c(0.5,0.6)
r10<-c(1,0.7)r20<-c(0.5,1)r30<-c(0.3,0.4)
r40<-r50<-r20
rc0 < -c(0.2, 0.4)getinner<-innervar(t=seq(0,10,by=0.5),taur=taur,u=u,ut=ut,pi1=0.5,
                     rate11=r11,rate21=r21,rate31=r31,
                     rate41=r41,rate51=r51,ratec1=rc1,
                     rate10=r10,rate20=r20,rate30=r30,
                     rate40=r40,rate50=r50,ratec0=rc0,
                     tchange=c(0,1),type1=1,type0=1,
                     eps=1.0e-2,veps=1.0e-2,beta=0.5)
cbind(getinner$qf1,getinner$qf0)
```


Description

This will calculate the timeline from some timepoint in study when some/all subjects have entered accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

```
instudyfindt(target=400,y=exp(rnorm(300)),z=rbinom(300,1,0.5),
                  d = rep(c(0,1,2), each = 100),
                  tcut=2,blinded=1,type0=1,type1=type0,
                  rp20=0.5,rp21=0.5,tchange=c(0,1),
             rate10=c(1,0.7),rate20=c(0.9,0.7),rate30=c(0.4,0.6),rate40=rate20,
                  rate50=rate20,ratec0=c(0.3,0.3),
                  rate11=rate10,rate21=rate20,rate31=rate30,
                  rate41=rate40,rate51=rate50,ratec1=ratec0,
                  withmorerec=1,
               ntotal=1000,taur=5,u=c(1/taur,1/taur),ut=c(taur/2,taur),pi1=0.5,
                  ntype0=1,ntype1=1,
                  nrp20=0.5,nrp21=0.5,ntchange=c(0,1),
                  nrate10=rate10,nrate20=rate20,nrate30=rate30,nrate40=rate40,
                  nrate50=rate50,nratec0=ratec0,
                  nrate11=rate10,nrate21=rate20,nrate31=rate30,nrate41=rate40,
                  nrate51=rate50,nratec1=ratec0,
                  eps=1.0e-2,init=tcut*1.1,epsilon=0.001,maxiter=100)
```


instudyfindt 21

maxiter Maximum number of iterations when calculating the timeline

Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^{m} \lambda_j I(t_{j-1} \leq t < t_j)$, where $\lambda_1, \dots, \lambda_m$ are the corresponding elements of the rates and t_0, \ldots, t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange. The hazard functions corresponding to nrate11,...,nrate51,nratec1, nrate10,...,nrate50,nratec0 are all piecewise constant functions and all must have the same ntchange.

Value

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

See Also

[pwe](#page-35-1),[rpwe](#page-76-1),[qpwe](#page-62-1),[pwecxpwufindt](#page-41-1)

Examples

```
n<-1000
target<-550
ntotal<-1000
pi1<-0.5
taur<-2.8
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11<-c(1,0.5)r21<-c(0.5,0.8)
r31<-c(0.7,0.4)
r41<-r51<-r21
rc1 < -c(0.5, 0.6)r10<-c(1,0.7)r20<-c(0.5,1)r30<-c(0.3,0.4)
r40<-r50<-r20
rc0 < -c(0.2, 0.4)tchange<-c(0,1.873)
tcut<-2
####generate the data
E<-T<-C<-Z<-delta<-rep(0,n)
E<-rpwu(nr=n,u=u,ut=ut)$r
Z<-rbinom(n,1,pi1)
n1 < -sum(Z)n0<-sum(1-Z)
C[Z==1]<-rpwe(nr=n1,rate=rc1,tchange=tchange)$r
C[Z==0]<-rpwe(nr=n0,rate=rc0,tchange=tchange)$r
T[Z==1]<-rpwecx(nr=n1,rate1=r11,rate2=r21,rate3=r31,
                rate4=r41,rate5=r51,tchange=tchange,type=1)$r
T[Z==0]<-rpwecx(nr=n0,rate1=r10,rate2=r20,rate3=r30,
                rate4=r40,rate5=r50,tchange=tchange,type=1)$r
y<-pmin(pmin(T,C),tcut-E)
y1<-pmin(C,tcut-E)
delta[T<=y]<-1
delta[C<=y]<-0
delta[tcut-E<=y & tcut-E>0]<-2
delta[tcut-E<=y & tcut-E<=0]<--1
ys<-y[delta>-1]
Zs<-Z[delta>-1]
ds<-delta[delta>-1]
```
ovbeta 23

```
nplus<-sum(delta==-1)
nd0 < - sum (ds = = 0)
nd1<-sum(ds==1)
nd2<-sum(ds==2)
ntaur<-taur-tcut
nu<-c(1/ntaur,1/ntaur)
nut<-c(ntaur/2,ntaur)
###calculate the timeline at baseline
xt<-pwecxpwufindt(target=target,ntotal=n,taur=taur,u=u,ut=ut,pi1=pi1,
              rate11=r11,rate21=r21,rate31=r31,ratec1=rc1,
              rate10=r10,rate20=r20,rate30=r30,ratec0=rc0,
              tchange=tchange,eps=0.001,init=taur,epsilon=0.000001,maxiter=100)
###calculate the timeline in study
yt<-instudyfindt(target=target,y=ys,z=Zs,d=ds,
                       tcut=tcut,blinded=0,type1=1,type0=1,tchange=tchange,
                       rate10=r10,rate20=r20,rate30=r30,ratec0=rc0,
                       rate11=r11,rate21=r21,rate31=r31,ratec1=rc1,
                       withmorerec=1,
                       ntotal=nplus,taur=ntaur,u=nu,ut=nut,pi1=pi1,
                       ntype1=1,ntype0=1,ntchange=tchange,
                       nrate10=r10,nrate20=r20,nrate30=r30,nratec0=rc0,
                       nrate11=r11,nrate21=r21,nrate31=r31,nratec1=rc1,
                       eps=1.0e-2,init=2,epsilon=0.001,maxiter=100)
##timelines
c(yt$t1,xt$t1)
##standard errors of the timeline estimators
c(sqrt(yt$tvar/yt$ny),sqrt(xt$tvar/n))
###95 percent CIs
c(yt$t1-1.96*sqrt(yt$tvar/yt$ny),yt$t1+1.96*sqrt(yt$tvar/yt$ny))
c(xt$t1-1.96*sqrt(xt$tvar/n),xt$t1+1.96*sqrt(xt$tvar/n))
```


ovbeta *calculate the overall log hazard ratio*

Description

This will calculate the overall (log) hazard ratio accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

```
ovbeta(tfix=2.0,taur=5,u=c(1/taur,1/taur),ut=c(taur/2,taur),pi1=0.5,
       rate11=c(1,0.5),rate21=rate11,rate31=c(0.7,0.4),rate41=rate21,
       rate51=rate21,ratec1=c(0.5,0.6),
       rate10=rate11,rate20=rate10,rate30=rate31,rate40=rate20,
       rate50=rate20,ratec0=c(0.4,0.3),
```
24 ovbeta

```
tchange=c(0,1),type1=1,type0=1,
rp21=0.5,rp20=0.5,
eps=1.0e-2,veps=1.0e-2,
beta0=0,epsbeta=1.0e-4,iterbeta=25)
```


ovbeta 25

Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^{m} \lambda_j I(t_{j-1} \leq t < t_j)$, where $\lambda_1, \dots, \lambda_m$ are the corresponding elements of the rates and t_0, \ldots, t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

Value

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

See Also

[pwe](#page-35-1),[rpwe](#page-76-1),[qpwe](#page-62-1)

Examples

```
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11<-c(1,0.5)r21<-c(0.5,0.8)
r31<-c(0.7,0.4)
r41<-r51<-r21
rc1<-c(0.5,0.6)
r10<-c(1,0.7)r20 < -c(0.5,1)r30<-c(0.3,0.4)
r40<-r50<-r20
```

```
rc0 < -c(0.2, 0.4)getbeta<-ovbeta(tfix=2.0,taur=taur,u=u,ut=ut,pi1=0.5,
      rate11=r11,rate21=r21,rate31=r31,rate41=r41,rate51=r51,ratec1=rc1,
      rate10=r10,rate20=r20,rate30=r30,rate40=r40,rate50=r50,ratec0=rc0,
    tchange=c(0,1),type1=1,type0=1,eps=1.0e-2,veps=1.0e-2,beta0=0,epsbeta=1.0e-4,iterbeta=25)
getbeta$b1
```
overallcov *calculate the overall covariance*

Description

This will calculate the overall covariance accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

```
overallcov(tfix=2.0,tfix0=1.0,taur=5,u=c(1/taur,1/taur),ut=c(taur/2,taur),pi1=0.5,
              rate11=c(1,0.5),rate21=rate11,rate31=c(0.7,0.4),
              rate41=rate21,rate51=rate21,ratec1=c(0.5,0.6),
              rate10=c(1,0.7),rate20=rate10,rate30=rate31,
              rate40=rate20,rate50=rate20,ratec0=ratec1,
              tchange=c(0,1), type1=1, type0=1,
              rp21=0.5,rp20=0.5,
              eps=1.0e-2,veps=1.0e-2,beta=0,beta0=0)
```


overallcov 27

Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^{m} \lambda_j I(t_{j-1} \le t < t_j)$, where $\lambda_1, \dots, \lambda_m$ are the corresponding elements of the rates and t_0, \ldots, t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

Value

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

See Also

[pwe](#page-35-1),[rpwe](#page-76-1),[qpwe](#page-62-1),[ovbeta](#page-22-1),[innervar](#page-15-1)

Examples

```
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11<-c(1,0.5)r21<-c(0.5,0.8)
r31<-c(0.7,0.4)
r41<-r51<-r21
rc1<-c(0.5,0.6)
r10<-c(1,0.7)r20 < -c(0.5,1)r30<-c(0.3,0.4)
r40<-r50<-r20
rc0 < -c(0.2, 0.4)getcov<-overallcov(tfix=2.0,tfix0=1.0,taur=taur,u=u,ut=ut,pi1=0.5,
              rate11=r11,rate21=r21,rate31=r31,
              rate41=r41,rate51=r51,ratec1=rc1,
              rate10=r10,rate20=r20,rate30=r30,
              rate40=r40,rate50=r50,ratec0=rc0,
              tchange=c(0,1),type1=1,type0=1,
              eps=1.0e-2,veps=1.0e-2,beta=0,beta0=0)
getcov$covbeta
```
overallcovp1 *calculate the first part of the overall covariance*

Description

This will calculate the first part of the overall covariance accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

```
overallcovp1(tfix=2.0,tfix0=1.0,taur=5,u=c(1/taur,1/taur),ut=c(taur/2,taur),pi1=0.5,
                    rate11=c(1,0.5),rate21=rate11,rate31=c(0.7,0.4),
                    rate41=rate21,rate51=rate51,ratec1=c(0.5,0.6),
                    rate10=rate11,rate20=rate10,rate30=rate31,
                    rate40=rate20,rate50=rate20,ratec0=ratec1,
                    tchange=c(0,1), type1=1, type0=1,
                    rp21=0.5,rp20=0.5,
                    eps=1.0e-2,veps=1.0e-2,beta=0,beta0=0)
```


overallcovp1 29

Arguments

Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^{m} \lambda_j I(t_{j-1} \le t < t_j)$, where $\lambda_1, \dots, \lambda_m$ are the corresponding elements of the rates and t_0, \ldots, t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

Value

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

See Also

[pwe](#page-35-1),[rpwe](#page-76-1),[qpwe](#page-62-1),[ovbeta](#page-22-1),[innervar](#page-15-1)

Examples

```
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11<-c(1,0.5)r21<-c(0.5,0.8)
r31<-c(0.7,0.4)
r41<-r51<-r21
rc1<-c(0.5,0.6)
r10<-c(1,0.7)
r20<-c(0.5,1)r30<-c(0.3,0.4)
r40<-r50<-r20
rc0 < -c(0.2, 0.4)getcov1<-overallcovp1(tfix=2.0,tfix0=1.0,taur=taur,u=u,ut=ut,pi1=0.5,
              rate11=r11,rate21=r21,rate31=r31,
              rate41=r41,rate51=r51,ratec1=rc1,
              rate10=r10,rate20=r20,rate30=r30,
              rate40=r40,rate50=r50,ratec0=rc0,
              tchange=c(0,1),type1=1,type0=1,
              eps=1.0e-2,veps=1.0e-2,beta=0,beta0=0)
getcov1$covbeta1
```
Description

This will calculate the other parts of the overall covariance accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

```
overallcovp2(tfix=2.0,tfix0=1.0,taur=5,u=c(1/taur,1/taur),ut=c(taur/2,taur),pi1=0.5,
                    rate11=c(1,0.5),rate21=rate11,rate31=c(0.7,0.4),
                    rate41=rate21,rate51=rate51,ratec1=c(0.5,0.6),
                    rate10=rate11,rate20=rate10,rate30=rate31,
                    rate40=rate20,rate50=rate20,ratec0=ratec1,
                    tchange=c(0,1), type1=1, type0=1,
                    rp21=0.5,rp20=0.5,
                    eps=1.0e-2,veps=1.0e-2,beta=0,beta0=0)
```


Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^{m} \lambda_j I(t_{j-1} \leq t < t_j)$, where $\lambda_1, \dots, \lambda_m$ are the corresponding elements of the rates and t_0, \ldots, t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

Value

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

See Also

[pwe](#page-35-1),[rpwe](#page-76-1),[qpwe](#page-62-1),[ovbeta](#page-22-1),[innervar](#page-15-1)

overallvar 33

Examples

```
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11<-c(1,0.5)r21<-c(0.5,0.8)
r31<-c(0.7,0.4)
r41<-r51<-r21
rc1<-c(0.5,0.6)
r10<-c(1, 0.7)r20<-c(0.5,1)r30<-c(0.3,0.4)
r40<-r50<-r20
rc0 < -c(0.2, 0.4)getcov2<-overallcovp2(tfix=2.0,tfix0=1.0,taur=taur,u=u,ut=ut,pi1=0.5,
              rate11=r11,rate21=r21,rate31=r31,
              rate41=r41,rate51=r51,ratec1=rc1,
              rate10=r10,rate20=r20,rate30=r30,
              rate40=r40,rate50=r50,ratec0=rc0,
              tchange=c(0,1),type1=1,type0=1,eps=1.0e-2,veps=1.0e-2,beta=0,beta0=0)
getcov2
```
overallvar *calculate the overall variance*

Description

This will calculate the overall variance accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

```
overallvar(tfix=2.0,taur=5,u=c(1/taur,1/taur),ut=c(taur/2,taur),pi1=0.5,
                     rate11=c(1,0.5),rate21=rate11,rate31=c(0.7,0.4),
                     rate41=rate21,rate51=rate21,ratec1=c(0.5,0.6),
                     rate10=rate11,rate20=rate10,rate30=rate31,
                     rate40=rate20,rate50=rate20,ratec0=c(0.6,0.5),
                     tchange=c(0,1), type1=1, type0=1,
                     rp21=0.5,rp20=0.5,
                     eps=1.0e-2,veps=1.0e-2,beta=0)
```


Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^{m} \lambda_j I(t_{j-1} \leq t < t_j)$, where $\lambda_1, \dots, \lambda_m$ are the corresponding elements of the rates and t_0, \ldots, t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

Value

overallvar 35

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

See Also

[pwe](#page-35-1),[rpwe](#page-76-1),[qpwe](#page-62-1),[ovbeta](#page-22-1),[innervar](#page-15-1)

Examples

```
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11<-c(1,0.5)r21<-c(0.5,0.8)
r31<-c(0.7,0.4)
r41<-r51<-r21
rc1<-c(0.5,0.6)
r10<-c(1,0.7)r20 < -c(0.5,1)r30<-c(0.3,0.4)
r40<-r50<-r20
rc0<-c(0.2,0.4)
###variance with beta=0, calculate log-rank variance under the alternative
vbeta0<-overallvar(tfix=2.0,taur=taur,u=u,ut=ut,pi1=0.5,
        rate11=r11,rate21=r21,rate31=r31,rate41=r41,rate51=r51,ratec1=rc1,
        rate10=r10,rate20=r20,rate30=r30,rate40=r40,rate50=r50,ratec0=rc0,
        tchange=c(0,1),type1=1,type0=1,eps=1.0e-2,veps=1.0e-2,beta=0)
###variance with beta=0, calculate log-rank variance under the alternative
###Estimate the overall beta
getbeta<-ovbeta(tfix=2.0,taur=taur,u=u,ut=ut,pi1=0.5,
        rate11=r11,rate21=r21,rate31=r31,rate41=r41,rate51=r51,ratec1=rc1,
        rate10=r10,rate20=r20,rate30=r30,rate40=r40,rate50=r50,ratec0=rc0,
        tchange=c(0,1),type1=1,type0=1,eps=1.0e-2,veps=1.0e-2,beta0=0,
        epsbeta=1.0e-4,iterbeta=25)
vbeta<-overallvar(tfix=2.0,taur=taur,u=u,ut=ut,pi1=0.5,
        rate11=r11,rate21=r21,rate31=r31,rate41=r41,rate51=r51,ratec1=rc1,
        rate10=r10,rate20=r20,rate30=r30,rate40=r40,rate50=r50,ratec0=rc0,
      tchange=c(0,1),type1=1,type0=1,eps=1.0e-2,veps=1.0e-2,beta=getbeta$b1)
cbind(vbeta0$vs, vbeta$vs)
```
pwe *Piecewise exponential distribution: hazard, cumulative hazard, density, distribution, survival*

Description

This will provide the related functions of the specified piecewise exponential distribution.

Usage

```
pwe(t=seq(0,5,by=0.5),rate=c(0,5,0.8),tchange=c(0,3))
```
Arguments

Details

Let $\lambda(t) = \sum_{j=1}^m \lambda_j I(t_{j-1} \le t < t_j)$ be the hazard function, where $\lambda_1, \ldots, \lambda_m$ are the corresponding elements of rate and t_0, \ldots, t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. The cumulative hazard function

$$
\Lambda(t) = \sum_{j=1}^{m} \lambda_j (t \wedge t_j - t \wedge t_{j-1}),
$$

the survival function $S(t) = \exp\{-\Lambda(t)\}\,$, the distribution function $F(t) = 1 - S(t)$ and the density function $f(t) = \lambda(t)S(t)$.

Value

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo
$pwecx$ 37

References

Luo, et al. (2017)

See Also

[rpwe](#page-76-0),[qpwe](#page-62-0)

Examples

```
t<-seq(0,3,by=0.1)
rate<-c(0.6,0.3)
tchange<-c(0,1.75)pwefun<-pwe(t=t,rate=rate,tchange=tchange)
pwefun
```


pwecx *Various function for piecewise exponential distribution with crossover effect*

Description

This will calculate the functions according to the piecewise exponential distribution with crossover

Usage

```
pwecx(t=seq(0,10,by=0.5),rate1=c(1,0.5),rate2=rate1,rate3=c(0.7,0.4),
     rate4=rate2,rate5=rate2,tchange=c(0,1),type=1,rp2=0.5,eps=1.0e-2)
```


38 pwecx

Details

More details

Value

Note

This provides a random number generator of the piecewise exponetial distribution with crossover

Author(s)

Xiaodong Luo

References

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

See Also

[rpwe](#page-76-0)

Examples

```
r1 < -c(0.6, 0.3)r2 < -c(0.6, 0.6)r3<-c(0.1,0.2)
r4 < -c(0.5, 0.4)r5 < -c(0.4, 0.5)pwecxfun<-pwecx(t=seq(0,10,by=0.5),rate1=r1,rate2=r2,rate3=r3,rate4=r4,
                rate5=r5,tchange=c(0,1),type=1,eps=1.0e-2)
pwecxfun$surv
```
Description

This will calculate the functions according to the piecewise exponential distribution with crossover

Usage

```
pwecxcens(t=seq(0,10,by=0.5),rate1=c(1,0.5),rate2=rate1,
                rate3=c(0.7,0.4),rate4=rate2,rate5=rate2,ratec=c(0.2,0.3),
                tchange=c(0,1),type=1,rp2=0.5,eps=1.0e-2)
```
Arguments

Details

This is to calculate the function (and its derivative)

$$
\xi(t) = \int_0^t \widetilde{f}(s) S_C(s) ds,
$$

where S_C is the piecewise exponential survival function of the censoring time, defined by tchange and ratec, and f is the density for the event distribution subject to crossover defined by tchange, rate1 to rate5 and type.

Value

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

See Also

[rpwe](#page-76-0)

Examples

```
r1 < -c(0.6, 0.3)r2 < -c(0.6, 0.6)r3<-c(0.1,0.2)
r4 < -c(0.5, 0.4)r5 < -c(0.4, 0.5)rc < -c(0.5, 0.6)exu<-pwecxcens(t=seq(0,10,by=0.5),rate1=r1,rate2=r2,
               rate3=r3,rate4=r4,rate5=r5,ratec=rc,
               tchange=c(0,1),type=1,eps=1.0e-2)
c(exu$du,exu$duprime)
```


Description

This will calculate the functions according to the piecewise exponential distribution with crossover

Usage

```
pwecxpwu(t=seq(0,10,by=0.5),taur=5,
       u=c(1/taur,1/taur),ut=c(taur/2,taur),
       rate1=c(1,0.5),rate2=rate1,rate3=c(0.7,0.4),
       rate4=rate2,rate5=rate2,ratec=c(0.5,0.6),
       tchange=c(0,1),type=1,rp2=0.5,eps=1.0e-2)
```


pwecxpwu 41

Details

This is to calculate the function (and its derivative)

$$
\xi(t) = \int_0^t G_E(t-s)\tilde{f}(s)S_C(s)ds,
$$

where G_E is the accrual function defined by taur, u and ut, S_C is the piecewise exponential survival function of the censoring time, defined by tchange and ratec, and \hat{f} is the density for the event distribution subject to crossover defined by tchange, rate1 to rate5 and type.

Value

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

See Also

[rpwe](#page-76-0)

Examples

taur<-2 $u < -c(0.6, 0.4)$ $ut < -c(1,2)$ $r1 < -c(0.6, 0.3)$ $r2 < -c(0.6, 0.6)$ r3<-c(0.1,0.2)

```
r4 < -c(0.5, 0.4)r5 < -c(0.4, 0.5)rc<-c(0.5,0.6)
exu<-pwecxpwu(t=seq(0,10,by=0.5),taur=taur,u=u,ut=ut,
        rate1=r1,rate2=r2,rate3=r3,rate4=r4,rate5=r5,ratec=rc,
        tchange=c(0,1),type=1,eps=1.0e-2)
c(exu$du,exu$duprime)
```
pwecxpwufindt *calculate the timeline when certain number of events accumulates*

Description

This will calculate the timeline from study inception accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

```
pwecxpwufindt(target=400,ntotal=1000,taur=5,u=c(1/taur,1/taur),ut=c(taur/2,taur),pi1=0.5,
                         rate11=c(1,0.5),rate21=c(0.8,0.9),rate31=c(0.7,0.4),
                         rate41=rate21,rate51=rate21,ratec1=c(0.5,0.6),
                         rate10=c(1,0.7),rate20=c(0.9,0.7),rate30=c(0.4,0.6),
                         rate40=rate20,rate50=rate20,ratec0=c(0.3,0.3),
                         tchange=c(0,1), type1=1, type0=1,
                         rp21=0.5,rp20=0.5,eps=1.0e-2,
                         init=taur,epsilon=0.000001,maxiter=100)
```


pwecxpwufindt 43

epsilon A small number representing the error tolerance when calculating the timeline.

maxiter Maximum number of iterations when calculating the timeline

Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^{m} \lambda_j I(t_{j-1} \leq t < t_j)$, where $\lambda_1, \dots, \lambda_m$ are the corresponding elements of the rates and t_0, \ldots, t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

Value

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

References

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

See Also

[pwe](#page-35-0),[rpwe](#page-76-0),[qpwe](#page-62-0),[instudyfindt](#page-18-0)

Examples

```
target<-400
ntotal<-2000
taur<-1.2u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11<-c(1,0.5)r21<-c(0.5,0.8)
r31<-c(0.7,0.4)
r41<-r51<-r21
rc1<-c(0.5,0.6)
r10<-c(1,0.7)
r20<-c(0.5,1)r30<-c(0.3,0.4)
r40<-r50<-r20
rc0<-c(0.2,0.4)
gettimeline<-pwecxpwufindt(target=target,ntotal=ntotal,
                taur=5,u=c(1/taur,1/taur),ut=c(taur/2,taur),pi1=0.5,
                rate11=r11,rate21=r21,rate31=r31,rate41=r41,rate51=r51,ratec1=rc1,
                rate10=r10,rate20=r20,rate30=r30,rate40=r40,rate50=r50,ratec0=rc0,
          tchange=c(0,1),type1=1,type0=1,eps=1.0e-2,init=taur,epsilon=0.000001,maxiter=100)
gettimeline$t1
```
pwecxpwuforvar *calculate the utility function used for varaince calculation*

Description

This is a utility function to calculate the overall variance accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

```
pwecxpwuforvar(tfix=10,t=seq(0,10,by=0.5),taur=5,u=c(1/taur,1/taur),ut=c(taur/2,taur),
  rate1=c(1,0.5),rate2=rate1,rate3=c(0.7,0.4),rate4=rate2,rate5=rate2,ratec=c(0.5,0.6),
         tchange=c(0,1),type=1,rp2=0.5,eps=1.0e-2)
```


pwecxpwuforvar 45

with $l = 0, 1, 2$.

Details

This is to calculate the function

$$
B_l(t,s) = \int_0^s x^l G_E(t-x) \tilde{f}(x) S_C(x) dx,
$$

where G_E is the accrual function defined by taur, u and ut, S_C is the piecewise exponential survival function of the censoring time, defined by tchange and ratec, and \tilde{f} is the density for the event distribution subject to crossover defined by tchange, rate1 to rate5 and type. This function is useful when calculating the overall varaince and covariance.

Value

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

46 pwefv2

See Also

[pwe](#page-35-0),[rpwe](#page-76-0),[qpwe](#page-62-0),[ovbeta](#page-22-0),[innervar](#page-15-0)

Examples

```
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11<-c(1,0.5)r21 < -c(0.5, 0.8)r31<-c(0.7,0.4)
r41<-r51<-r21
rc1 < -c(0.5, 0.6)getf<-pwecxpwuforvar(tfix=3,t=seq(0,3,by=1),taur=taur,u=u,ut=ut,
                 rate1=r11,rate2=r21,rate3=r31,rate4=r41,rate5=r51,ratec=rc1,
                 tchange=c(0,1),type=1,eps=1.0e-2)
getf
```
pwefv2 *A utility function*

Description

This will $\frac{\sinh(0)}{s}$ s^{^k} lambda_1(s)S_2(s)ds\$ where k=0,1,2 and rate1=lambda_1 and S_2 has hazard rate2

Usage

```
pwefv2(t=seq(0,5,by=0.5),rate1=c(0,5,0.8),
     rate2=rate1,tchange=c(0,3),eps=1.0e-2)
```
Arguments

Details

Let h_1, h_2 correspond to rate1,rate2, and H_1, H_2 be the corresponding survival functions. This function will calculate

$$
\int_0^t s^k h_1(s) H_2(s) ds, \qquad k = 0, 1, 2.
$$

pwefvplus 47

Value

Note

This will provide the number of events.

Author(s)

Xiaodong Luo

References

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

See Also

[rpwe](#page-76-0)

Examples

```
r1 < -c(0.6, 0.3)r2 < -c(0.6, 0.6)tchange<-c(0,1.75)
pwefun<-pwefv2(t=seq(0,5,by=0.5),rate1=r1,rate2=r2,
              tchange=tchange,eps=1.0e-2)
pwefun
```
pwefvplus *A utility functon*

Description

This will calculate the more complex integration accounting for crossover

Usage

```
pwefvplus(t=seq(0,5,by=0.5),rate1=c(0,5,0.8),rate2=rate1,
                   rate3=c(0.1,0.2),rate4=rate2,rate5=rate2,
                   rate6=c(0.5,0.3),tchange=c(0,3),type=1,
                   rp2=0.5,eps=1.0e-2)
```
48 pwefvplus

Arguments

Details

Let h_1, \ldots, h_6 correspond to rate1,...,rate6, and H_1, \ldots, H_6 be the corresponding survival functions. Also let $\pi_2 = \text{rp2}$. when type=1, we calculate

$$
\int_0^t s^k h_2(s) H_2(s) H_6(s) \int_0^s h_3(u) H_1(u) H_3(u) / H_2(u) du ds;
$$

when type=2, we calculate

$$
\int_0^t s^k H_6(s) \int_0^s h_3(u) H_1(u) H_3(u) h_2(s-u) H_2(s-u) du ds;
$$

when type=3, we calculate the sum of

$$
\pi_2 \int_0^t s^k H_4^{1-\pi_2}(s) H_6(s) \int_0^s h_3(u) H_1(u) H_3(u) h_2(s-u) H_2^{\pi_2}(s-u) / H_4^{1-\pi_2}(u) du ds
$$

and

$$
(1 - \pi_2) \int_0^t s^k h_4(s) H_4^{1 - \pi_2}(s) H_6(s) \int_0^s h_3(u) H_1(u) H_3(u) H_2^{\pi_2}(s - u) / H_4^{1 - \pi_2}(u) du ds;
$$

when type=4, we calculate the sum of

$$
\pi_2 \int_0^t s^k H_6(s) \int_0^s h_3(u) H_1(u) H_3(u) h_2(s-u) H_2(s-u) du ds
$$

and

$$
(1 - \pi_2) \int_0^t s^k h_4(s) H_4(s) H_6(s) \int_0^s h_3(u) H_1(u) H_3(u) / H_4(u) du ds;
$$

when type=5, we calculate the sum of

$$
\pi_2 \int_0^t s^k H_6(s) \int_0^s h_3(u) H_1(u) H_3(u) h_2(s-u) H_2(s-u) du ds
$$

and

$$
(1 - \pi_2) \int_0^t s^k H_6(s) \int_0^s h_3(u) H_1(u) H_3(u) h_4(s - u) H_4(s - u) du ds.
$$

pwepower 49

Value

Note

This provides the result of the complex integration

Author(s)

Xiaodong Luo

References

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

See Also

[rpwe](#page-76-0)

Examples

```
r1 < -c(0.6, 0.3)r2 < -c(0.6, 0.6)r3<-c(0.1,0.2)
r4 < -c(0.5, 0.4)r5 < -c(0.4, 0.5)r6 < -c(0.4, 0.5)tchange<-c(0,1.75)
pwefun<-pwefvplus(t=seq(0,5,by=0.5),rate1=r1,rate2=r2,rate3=r3,
                  rate4=r4,rate5=r5,rate6=r6,
                  tchange=c(0,3),type=1,eps=1.0e-2)
pwefun
```


pwepower *Calculating the powers of various the test statistics for superiority tri-*

Description

This will calculate the powers for the test statistics accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

```
pwepower(t=seq(0.1,3,by=0.5),alpha=0.05,twosided=1,taur=1.2,
            u=c(1/taur,1/taur),ut=c(taur/2,taur),pi1=0.5,
             rate11=c(1,0.5),rate21=rate11,rate31=c(0.7,0.4),
             rate41=rate21,rate51=rate21,ratec1=c(0.5,0.6),
             rate10=rate11,rate20=rate10,rate30=rate31,
             rate40=rate20,rate50=rate20,ratec0=c(0.6,0.5),
             tchange=c(0,1),type1=1,type0=1,rp21=0.5,rp20=0.5,
             eps=1.0e-2,veps=1.0e-2,epsbeta=1.0e-4,iterbeta=25,
             n=1000)
```


pwepower 51

Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^{m} \lambda_j I(t_{j-1} \leq t < t_j)$, where $\lambda_1, \dots, \lambda_m$ are the corresponding elements of the rates and t_0, \ldots, t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

Value

power powers for various test statistics. Columns 2-6 are for log-rank and columns 12-16 are for cox model. Column 2 is the exact power based on log-rank/score test; column 3 uses variance approximated by Fisher information, i.e. Lakatos's method; column 4 uses approximated Fisher info by number of events i.e. 4/D(t); column 5 uses approximated Fisher info by assuming exp dist. $1/D1(t)+1/D0(t)$; column 6 uses Fisher information at beta. Column 12 is the exact power based on Wald test; column 13 uses variance approximated by Fisher information; column 14 uses approximated Fisher info by number of events i.e. 4/D(t); column 15 uses approximated Fisher info by assuming exp dist. $1/D1(t)+1/D0(t)$; column 16 uses Fisher information at beta=0.

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

See Also

[pwe](#page-35-0),[rpwe](#page-76-0),[qpwe](#page-62-0),[ovbeta](#page-22-0),[innervar](#page-15-0), [pwepowerni](#page-56-0),[pwepowereq](#page-51-0)

Examples

```
t < -seq(3, 6, by=1)taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11<-c(0.2,0.1)r21<-r11
r31<-c(0.03,0.02)
```

```
r41<-r51<-r21
rc1<-c(0.01,0.02)
r10<-c(0.2,0.2)
r20<-r10
r30<-c(0.02,0.01)
r40<-r50<-r20
rc0<-c(0.02,0.01)
getpower<-pwepower(t=t,alpha=0.05,twosided=1,taur=taur,u=u,ut=ut,pi1=0.5,
                   rate11=r11,rate21=r21,rate31=r31,rate41=r41,rate51=r51,ratec1=rc1,
                   rate10=r10,rate20=r20,rate30=r30,rate40=r40,rate50=r50,ratec0=rc0,
                   tchange=c(0,1),type1=1,type0=1,n=1000)
###powers at each time point
cbind(t,getpower$power[,c(2:4,12:14)])
```
pwepowereq *Calculating the powers of various the test statistics for equivalence trials*

Description

This will calculate the powers for the test statistics accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

```
pwepowereq(t=seq(0.1,3,by=0.5),uppermargin=1.3,lowermargin=1/uppermargin,
           alpha=0.05,taur=1.2,u=c(1/taur,1/taur),ut=c(taur/2,taur),pi1=0.5,
             rate11=c(1,0.5),rate21=rate11,rate31=c(0.7,0.4),
             rate41=rate21,rate51=rate21,ratec1=c(0.5,0.6),
             rate10=rate11,rate20=rate10,rate30=rate31,
             rate40=rate20,rate50=rate20,ratec0=c(0.6,0.5),
             tchange=c(0,1), type1=1, type0=1,
             rp21=0.5,rp20=0.5,eps=1.0e-2,veps=1.0e-2,
             epsbeta=1.0e-4,iterbeta=25,n=1000)
```


pwepowereq 53

Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^{m} \lambda_j I(t_{j-1} \leq t < t_j)$, where $\lambda_1, \dots, \lambda_m$ are the corresponding elements of the rates and t_0, \ldots, t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

Value

power powers for cox model. First column is the more accurate power, second column is the power assuming the Fisher information equal to the varaince of beta

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

See Also

[pwe](#page-35-0),[rpwe](#page-76-0),[qpwe](#page-62-0),[ovbeta](#page-22-0),[innervar](#page-15-0), [pwepower](#page-48-0),[pwepowerni](#page-56-0)

Examples

```
t<-seq(3,6,by=1)
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11<-c(0.2,0.1)
r21<-r11
r31<-c(0.03,0.02)
r41<-r51<-r21
rc1<-c(0.01,0.02)
r10<-c(0.2,0.2)
r20<-r10
r30<-c(0.02,0.01)
r40<-r50<-r20
rc0<-c(0.02,0.01)
getpowereq<-pwepowereq(t=t,uppermargin=1.3,lowermargin=0.8,alpha=0.05,taur=taur,
            u=u,ut=ut,pi1=0.5,rate11=r11,rate21=r21,rate31=r31,
            rate41=r41,rate51=r51,ratec1=rc1,
            rate10=r10,rate20=r20,rate30=r30,rate40=r40,rate50=r50,ratec0=rc0,
            tchange=c(0,1),type1=1,type0=1,n=1000)
###powers at each time point
cbind(t,getpowereq$power[,1:3])
```
pwepowerfindt *Calculating the timepoint where a certain power of the specified test statistics is obtained*

Description

This will calculate the timepoint where a certain power of the specified test statistics is obtained accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

```
pwepowerfindt(power=0.9,alpha=0.05,twosided=1,tupp=5,tlow=1,taur=1.2,
                     u=c(1/taur,1/taur),ut=c(taur/2,taur),pi1=0.5,
                     rate11=c(1,0.5),rate21=rate11,rate31=c(0.7,0.4),
                     rate41=rate21,rate51=rate21,ratec1=c(0.5,0.6),
                     rate10=rate11,rate20=rate10,rate30=rate31,
                     rate40=rate20,rate50=rate20,ratec0=c(0.6,0.5),
                     tchange=c(0,1), type1=1, type0=1,
```
pwepowerfindt 55

rp21=0.5,rp20=0.5,eps=1.0e-2,veps=1.0e-2, epsbeta=1.0e-04,iterbeta=25, n=1000,testtype=1,maxiter=20,itereps=0.001)

Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^{m} \lambda_j I(t_{j-1} \leq t < t_j)$, where $\lambda_1, \dots, \lambda_m$ are the corresponding elements of the rates and t_0, \ldots, t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

Value

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

See Also

[pwe](#page-35-0),[rpwe](#page-76-0),[qpwe](#page-62-0),[ovbeta](#page-22-0),[innervar](#page-15-0)

Examples

```
t < - seq(3,6, by=1)
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11<-c(0.2,0.1)r21<-r11
r31<-c(0.03,0.02)
r41<-r51<-r21
rc1<-c(0.01,0.02)
r10<-c(0.2,0.2)
r20<-r10
r30<-c(0.02,0.01)
r40<-r50<-r20
rc0<-c(0.02,0.01)
getpower<-pwepower(t=t,alpha=0.05,twosided=1,taur=taur,u=u,ut=ut,pi1=0.5,
                   rate11=r11,rate21=r21,rate31=r31,rate41=r41,rate51=r51,ratec1=rc1,
                   rate10=r10,rate20=r20,rate30=r30,rate40=r40,rate50=r50,ratec0=rc0,
```
pwepowerni 57

```
tchange=c(0,1),type1=1,type0=1,n=1000)
###powers at each time point
cbind(t,getpower$power[,1:3])
###90% power should be in (3,3.5)
getpwtime<-pwepowerfindt(power=0.9,alpha=0.05,twosided=1,tupp=3.5,tlow=3,taur=taur,
     u=u,ut=ut,pi1=0.5,rate11=r11,rate21=r21,rate31=r31,rate41=r41,rate51=r51,ratec1=rc1,
       rate10=r10,rate20=r20,rate30=r30,rate40=r40,rate50=r50,ratec0=rc0,
       tchange=c(0,1),type1=1,type0=1,n=1000,testtype=1,maxiter=30)
getpwtime
```


Description

This will calculate the powers for the test statistics accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

```
pwepowerni(t=seq(0.1,3,by=0.5),nimargin=1.3,alpha=0.05,twosided=0,taur=1.2,
           u=c(1/taur,1/taur),ut=c(taur/2,taur),pi1=0.5,
           rate11=c(1,0.5),rate21=rate11,rate31=c(0.7,0.4),
           rate41=rate21,rate51=rate21,ratec1=c(0.5,0.6),
           rate10=rate11,rate20=rate10,rate30=rate31,
           rate40=rate20,rate50=rate20,ratec0=c(0.6,0.5),
           tchange=c(0,1), type1=1, type0=1,
           rp21=0.5,rp20=0.5,eps=1.0e-2,veps=1.0e-2,
           epsbeta=1.0e-4,iterbeta=25,n=1000)
```


Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^{m} \lambda_j I(t_{j-1} \leq t < t_j)$, where $\lambda_1, \dots, \lambda_m$ are the corresponding elements of the rates and t_0, \ldots, t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

Value

power powers for cox model. First column is the more accurate power, second column is the power assuming the Fisher information equal to the varaince of beta

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

pwesim 59

See Also

[pwe](#page-35-0),[rpwe](#page-76-0),[qpwe](#page-62-0),[ovbeta](#page-22-0),[innervar](#page-15-0), [pwepower](#page-48-0),[pwepowereq](#page-51-0)

Examples

```
t < - seq(3,6, by=1)
taur < -1.2u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11<-c(0.2,0.1)
r21<-r11
r31<-c(0.03,0.02)
r41<-r51<-r21
rc1<-c(0.01,0.02)
r10<-c(0.2,0.2)
r20<-r10
r30<-c(0.02,0.01)
r40<-r50<-r20
rc0<-c(0.02,0.01)
getpowerni<-pwepowerni(t=t,nimargin=1.3,alpha=0.05,twosided=1,taur=taur,u=u,ut=ut,pi1=0.5,
                   rate11=r11,rate21=r21,rate31=r31,rate41=r41,rate51=r51,ratec1=rc1,
                   rate10=r10,rate20=r20,rate30=r30,rate40=r40,rate50=r50,ratec0=rc0,
                   tchange=c(0,1),type1=1,type0=1,n=1000)
###powers at each time point
cbind(t,getpowerni$power[,1:3])
```
pwesim *simulating the test statistics*

Description

This will simulate the test statistics accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

```
pwesim(t=seq(1,2,by=0.1),taur=1.2,u=c(1/taur,1/taur),ut=c(taur/2,taur),pi1=0.5,
                     rate11=c(1,0.5),rate21=rate11,rate31=c(0.7,0.4),
                     rate41=rate21,rate51=rate21,ratec1=c(0.5,0.6),
                     rate10=rate11,rate20=rate10,rate30=rate31,
                     rate40=rate20,rate50=rate20,ratec0=c(0.6,0.5),
                     tchange=c(0,1), type1=1, type0=1,
                     rp21=0.5,rp20=0.5,
                     n=1000,rn=200,testtype=c(1,2,3,4))
```
60 pwesim

Arguments

Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^{m} \lambda_j I(t_{j-1} \leq t < t_j)$, where $\lambda_1, \dots, \lambda_m$ are the corresponding elements of the rates and t_0, \ldots, t_{m-1} are the corresponding elements of tchange, $t_m = \infty.$ Note that all the rates must have the same tchange.

Value

outr test statistics at each time point and each simulation run

 p wu 61

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

See Also

[pwe](#page-35-0),[rpwe](#page-76-0),[qpwe](#page-62-0),[ovbeta](#page-22-0),[innervar](#page-15-0)

Examples

```
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11<-c(1,0.5)r21<-c(0.5,0.8)
r31<-c(0.7,0.4)
r41<-r51<-r21
rc1<-c(0.5,0.6)
r10<-c(1,0.7)r20<-c(0.5,1)r30<-c(0.3,0.4)
r40<-r50<-r20
rc0 < -c(0.2, 0.4)ar<-pwesim(t=seq(1,2,by=0.1),taur=taur,u=u,ut=ut,pi1=0.5,
        rate11=r11,rate21=r21,rate31=r31,rate41=r41,rate51=r51,ratec1=rc1,
        rate10=r10,rate20=r20,rate30=r30,rate40=r40,rate50=r50,ratec0=rc0,
        tchange=c(0,1), type1=1, type0=1,
        n=300,rn=10)
```


pwu *Piecewise uniform distribution: distribution*

Description

This will calculate the distribution function of the piecewise uniform distribution

Usage

pwu(t=seq(0,1,by=0.1),u=c(0,5,0.5),ut=c(1,2))

Arguments

Details

Let $f(t) = \sum_{j=1}^{m} u_j I(t_{j-1} < t \le t_j)$ be the density function, where u_1, \ldots, u_m are the corresponding elements of u and t_1, \ldots, t_m are the corresponding elements of ut and $t_0 = 0$. The distribution function

$$
F(t) = \sum_{j=1}^{m} u_j(t \wedge t_j - t \wedge t_{j-1}).
$$

User must make sure that $\sum_{j=1}^{m} u_j (t_j - t_{j-1}) = 1$ before using this function.

Value

dist distribution

Note

This provides distribution of the piecewise uniform distribution

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

See Also

[pwe](#page-35-0)

Examples

```
t<-seq(-1,3,by=0.5)
u < -c(0.6, 0.4)ut < -c(1,2)pwud<-pwu(t=t,u=u,ut=ut)
pwud
```


Description

This will provide the quantile function of the specified piecewise exponential distribution

Usage

qpwe(p=seq(0,1,by=0.1),rate=c(0,5,0.8),tchange=c(0,3))

Arguments

Details

More details

Value

Note

This provides the quantile function related to the piecewise exponetial distribution

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

See Also

piecewise exponential

Examples

```
p<-seq(0,1,by=0.1)
rate<-c(0.6,0.3)
tchange<-c(0,1.75)
pweq<-qpwe(p=p,rate=rate,tchange=tchange)
pweq
```
Description

This will provide the quantile function of the specified piecewise uniform distribution

Usage

qpwu(p=seq(0,1,by=0.1),u=c(0,5,0.5),ut=c(1,2))

Arguments

Details

Let $f(t) = \sum_{j=1}^{m} u_j I(t_{j-1} < t \le t_j)$ be the density function, where u_1, \ldots, u_m are the corresponding elements of u and t_1, \ldots, t_m are the corresponding elements of ut and $t_0 = 0$. The distribution function

$$
F(t) = \sum_{j=1}^{m} u_j (t \wedge t_j - t \wedge t_{j-1}).
$$

User must make sure that $\sum_{j=1}^{m} u_j (t_j - t_{j-1}) = 1$ before using this function.

Value

q quantiles

Note

This provides the quantile function related to the piecewise uniform distribution

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

See Also

piecewise uniform

rmstcov 65

Examples

```
p<-seq(0,1,by=0.1)
u < -c(0.6, 0.4)ut < -c(1,2)pwuq<-qpwu(p=p,u=u,ut=ut)
pwuq
```


Calculation of the variance and covariance of estimated restricted *mean survival time*

Description

A function to calculate the variance and covariance of estimated restricted mean survival time using data from different cut-off points accounting for delayed treatment, discontinued treatment and non-uniform entry

Usage

```
rmstcov(t1cut=2.0,t1study=2.5,t2cut=3.0,t2study=3.5,taur=5,
       u=c(1/taur,1/taur),ut=c(taur/2,taur),
       rate1=c(1,0.5),rate2=rate1,rate3=c(0.7,0.4),
       rate4=rate2,rate5=rate2,ratec=c(0.5,0.6),
       tchange=c(0,1),type=1,rp2=0.5,
       eps=1.0e-2,veps=1.0e-2)
```


Details

More details

Value

Note

This calculates the "true" variance and covariance of restricted mean survival times

Author(s)

Xiaodong Luo

rmsth 67

References

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

Examples

```
r1 < -c(0.6, 0.3)r2 < -c(0.6, 0.6)r3<-c(0.1,0.2)
r4 < -c(0.5, 0.4)r5 < -c(0.4, 0.5)rc < -c(0.1, 0.1)rmcov<-rmstcov(t1cut=2.0,t1study=2.5,t2cut=3.0,t2study=3.5,taur=5,
        rate1=r1,rate2=r2,rate3=r3,rate4=r4,rate5=r5,ratec=rc,
        tchange=c(0,1),type=1)
rmcov
```


Description

A function to estimate the restricted mean survival time (RMST) and its variance from data

Usage

rmsth(y=c(1,2,3),d=c(1,1,0),tcut=2.0,eps=1.0e-08)

Arguments

Details

More details

Value

This estimates the restricted mean survival time and its asymptotic variance

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

Examples

```
lamt<-\theta.8lamc<-0.4
n<-3000
tcut < -2.0truermst<-(1-exp(-lamt*tcut))/lamt
tt<-rexp(n)/lamt
cc<-rexp(n)/lamc
yy<-pmin(tt,cc)
dd<-rep(1,n)
dd[tt>cc]<-0
aest<-rmsth(y=yy,d=dd,tcut=tcut)
aest
```
rmstpower *Calculate powers at different cut-points based on difference of restricted mean survival times (RMST)*

Description

A function to calculate powers at different cut-points based on difference of restricted mean survival times (RMST) account for delayed treatment, discontinued treatment and non-uniform entry

Usage

```
rmstpower(tcut=2,tstudy=seq(tcut,tcut+2,by=0.5),alpha=0.05,twosided=1,
         taur=1.2,u=c(1/taur,1/taur),ut=c(taur/2,taur),pi1=0.5,
         rate11=c(1,0.5),rate21=rate11,rate31=c(0.7,0.4),
         rate41=rate21,rate51=rate21,ratec1=c(0.5,0.6),
         rate10=rate11,rate20=rate10,rate30=rate31,
         rate40=rate20,rate50=rate20,ratec0=c(0.6,0.5),
         tchange=c(0,1),type1=1,type0=1,rp21=0.5,rp20=0.5,
         eps=1.0e-2,veps=1.0e-2,n=1000)
```
rmstpower 69

Arguments

Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^{m} \lambda_j I(t_{j-1} \le t < t_j)$, where $\lambda_1, \dots, \lambda_m$ are the corresponding elements of the rates and t_0, \ldots, t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

Value

Note

This calculates the restricted mean survival times between the treatment and control groups and their standard errors

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

Examples

```
tcut<-3.0
tstudylt-seq(3, 6, by=1)
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11<-c(0.2,0.1)
r21<-r11
r31<-c(0.03,0.02)
r41<-r51<-r21
rc1<-c(0.01,0.02)
r10<-c(0.2,0.2)r20<-r10
r30<-c(0.02,0.01)
r40<-r50<-r20
rc0<-c(0.02,0.01)
getrmst<-rmstpower(tcut=tcut,tstudy=tstudy,alpha=0.05,twosided=1,
          taur=taur,u=u,ut=ut,pi1=0.5,
          rate11=r11,rate21=r21,rate31=r31,rate41=r41,rate51=r51,ratec1=rc1,
          rate10=r10,rate20=r20,rate30=r30,rate40=r40,rate50=r50,ratec0=rc0,
          tchange=c(0,1),type1=1,type0=1,rp21=0.5,rp20=0.5,n=1000)
###powers at each time point
cbind(tstudy,getrmst$power)
```
rmstpowerfindt *Calculating the timepoint where a certain power of mean difference of RMSTs is obtained*

Description

This will calculate the timepoint where a certain power of the mean difference of RMSTs is obtained accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

```
rmstpowerfindt(power=0.9,alpha=0.05,twosided=1,tcut=2,tupp=5,tlow=3.0,taur=1.2,
           u=c(1/taur,1/taur),ut=c(taur/2,taur),pi1=0.5,
           rate11=c(1,0.5),rate21=rate11,rate31=c(0.7,0.4),
           rate41=rate21,rate51=rate21,ratec1=c(0.5,0.6),
           rate10=rate11,rate20=rate10,rate30=rate31,
           rate40=rate20,rate50=rate20,ratec0=c(0.6,0.5),
           tchange=c(0,1), type1=1, type0=1,
           rp21=0.5,rp20=0.5,eps=1.0e-2,veps=1.0e-2,
           n=1000,maxiter=20,itereps=0.001)
```


Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^{m} \lambda_j I(t_{j-1} \leq t < t_j)$, where $\lambda_1, \dots, \lambda_m$ are the corresponding elements of the rates and t_0, \ldots, t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

Value

Note

Version 1.0 (8/8/2017)

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

See Also

[pwe](#page-35-0),[rpwe](#page-76-0),[qpwe](#page-62-0),[ovbeta](#page-22-0),[innervar](#page-15-0)
rmstsim and the contract of th

Examples

```
tcut<-3.0
tstudylt-seq(3, 6,by=0.2)
taur<-2
u < -c(0.3, 0.7)ut<-c(taur/2,taur)
r11<-c(0.2,0.1)
r21<-r11
r31<-c(0.03,0.02)
r41<-r51<-r21
rc1<-c(0.05,0.04)
r10<-c(0.22,0.22)
r20<-r10
r30<-c(0.02,0.01)
r40<-r50<-r20
rc0<-c(0.04,0.05)
ntotal<-1200
getrmst<-rmstpower(tcut=tcut,tstudy=tstudy,alpha=0.05,twosided=1,
        taur=taur,u=u,ut=ut,pi1=0.5,
        rate11=r11,rate21=r21,rate31=r31,rate41=r41,rate51=r51,ratec1=rc1,
        rate10=r10,rate20=r20,rate30=r30,rate40=r40,rate50=r50,ratec0=rc0,
        tchange=c(0,1),type1=1,type0=1,rp21=0.5,rp20=0.5,n=ntotal)
###powers at each time point
cbind(tstudy,getrmst$power)
###90 percent power should be in (3,4)
gettime<-rmstpowerfindt(power=0.9,alpha=0.05,twosided=1,tcut=tcut,tupp=4,tlow=3.0,taur=taur,
      u=u,ut=ut,pi1=0.5,rate11=r11,rate21=r21,rate31=r31,rate41=r41,rate51=r51,ratec1=rc1,
          rate10=r10,rate20=r20,rate30=r30,rate40=r40,rate50=r50,ratec0=rc0,
          tchange=c(0,1),type1=1,type0=1,rp21=0.5,rp20=0.5,eps=1.0e-2,veps=1.0e-2,
          n=ntotal,maxiter=20,itereps=0.0001)
gettime
```
rmstsim *simulating the restricted mean survival times*

Description

This will simulate the test statistics accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

```
rmstsim(tcut=c(1,2),tstudy=tcut+0.2,taur=1.2,
       u=c(1/taur,1/taur),ut=c(taur/2,taur),pi1=0.5,
       rate11=c(1,0.5),rate21=rate11,rate31=c(0.7,0.4),
       rate41=rate21,rate51=rate21,ratec1=c(0.5,0.6),
       rate10=rate11,rate20=rate10,rate30=rate31,
       rate40=rate20,rate50=rate20,ratec0=c(0.6,0.5),
```
74 rmstsim

```
tchange=c(0,1),type1=1,type0=1,rp21=0.5,rp20=0.5,
n=1000,rn=200,eps=1.0E-08)
```
Arguments

Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^{m} \lambda_j I(t_{j-1} \le t < t_j)$, where $\lambda_1, \dots, \lambda_m$ are the corresponding elements of the rates and t_0, \ldots, t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

rmstsim and the contract of th

Value

outr test statistics at each pair of tcut and tstudy in column and each simulation run in row

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

References

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

See Also

[pwe](#page-35-0),[rpwe](#page-76-0),[qpwe](#page-62-0),[ovbeta](#page-22-0)

```
tcuta < -c(2,3)taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11<-c(1,0.5)r21<-c(0.5,0.8)
r31<-c(0.7,0.4)
r41<-r51<-r21
rc1 < -c(0.5, 0.6)r10<-c(1.5,0.7)
r20 < -c(0.5,1)r30<-c(0.3,0.4)
r40<-r50<-r20
rc0 < -c(0.2, 0.4)ar<-rmstsim(tcut=tcuta,tstudy=tcuta+0.1,taur=taur,u=u,ut=ut,pi1=0.5,
            rate11=r11,rate21=r21,rate31=r31,rate41=r41,rate51=r51,ratec1=rc1,
            rate10=r10,rate20=r20,rate30=r30,rate40=r40,rate50=r50,ratec0=rc0,
            tchange=c(0,1), type1=1, type0=1,
            n=300,rn=200)
##Empirical power
apply(ar$outr>1.96,2,mean)
```
76 rmstutil

rmstutil *A utility function to calculate the true restricted mean survival time (RMST) and its variance account for delayed treatment, discontinued treatment and non-uniform entry*

Description

A utility function to calculate the true restricted mean survival time (RMST) and its variance account for delayed treatment, discontinued treatment and non-uniform entry

Usage

```
rmstutil(tcut=2.0,tstudy=5.0,taur=5,u=c(1/taur,1/taur),ut=c(taur/2,taur),
       rate1=c(1,0.5),rate2=rate1,rate3=c(0.7,0.4),
       rate4=rate2,rate5=rate2,ratec=c(0.5,0.6),
       tchange=c(0,1),type=1,rp2=0.5,
       eps=1.0e-2,veps=1.0e-2)
```
Arguments

rpwe the contract of the contr

Details

More details

Value

Note

This calculates the "true" variance of restricted mean survival times

Author(s)

Xiaodong Luo

References

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

Examples

```
r1 < -c(0.6, 0.3)r2<-c(0.6,0.6)
r3<-c(0.1,0.2)
r4 < -c(0.5, 0.4)r5 < -c(0.4, 0.5)rc<-c(0.1,0.1)
rmt<-rmstutil(tcut=2.0,tstudy=5.0,taur=5,
        rate1=r1,rate2=r2,rate3=r3,
        rate4=r4,rate5=r5,ratec=rc,
        tchange=c(0,1),type=1,rp2=0.5,
        eps=1.0e-2,veps=1.0e-2)
rmt
```
rpwe *Piecewise exponential distribution: random number generation*

Description

This will generate random numbers according to the specified piecewise exponential distribution

rpwe(nr=10,rate=c(0,5,0.8),tchange=c(0,3))

Arguments

Details

More details

Value

r random numbers

Note

This provides a random number generator of the piecewise exponetial distribution

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

See Also

piecewise exponential

```
nr<-10
rate<-c(0.6,0.3)
tchange<-c(0,1.75)
pwer<-rpwe(nr=nr,rate=rate,tchange=tchange)
pwer
```
rpwecx *Piecewise exponential distribution with crossover effect: random number generation*

Description

This will generate random numbers according to the piecewise exponential distribution with crossover

Usage

```
rpwecx(nr=1,rate1=c(1,0.5),rate2=rate1,rate3=c(0.7,0.4),
rate4=rate2,rate5=rate2,tchange=c(0,1),type=1,rp2=0.5)
```
Arguments

Details

More details

Value

Note

This provides a random number generator of the piecewise exponetial distribution with crossover

Author(s)

Xiaodong Luo

References

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

See Also

[rpwe](#page-76-0)

Examples

```
r1 < -c(0.6, 0.3)r2 < -c(0.6, 0.6)r3<-c(0.1,0.2)
r4 < -c(0.5, 0.4)r5<-c(0.4,0.5)
pwecxr<-rpwecx(nr=10,rate1=r1,rate2=r2,rate3=r3,rate4=r4,rate5=r5,tchange=c(0,1),type=1)
pwecxr$r
```
rpwu *Piecewise uniform distribution: random number generation*

Description

This will generate random numbers according to the specified piecewise uniform distribution

Usage

rpwu(nr=10,u=c(0,6,0.4),ut=c(1,2))

Arguments

Details

Let $f(t) = \sum_{j=1}^{m} u_j I(t_{j-1} < t \le t_j)$ be the density function, where u_1, \ldots, u_m are the corresponding elements of u and t_1, \ldots, t_m are the corresponding elements of ut and $t_0 = 0$. The distribution function

$$
F(t) = \sum_{j=1}^{m} u_j(t \wedge t_j - t \wedge t_{j-1}).
$$

User must make sure that $\sum_{j=1}^{m} u_j (t_j - t_{j-1}) = 1$ before using this function.

Value

r random numbers

Note

This provides a random number generator of the piecewise uniform distribution

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

See Also

[rpwe](#page-76-0)

Examples

```
nr<-10
u < -c(0.6, 0.4)ut < -c(1,2)pwur<-rpwu(nr=nr,u=u,ut=ut)
pwur
```
spf *A utility function*

Description

A utility function to calculate a ratio.

Usage

spf(x=seq(-1,1,by=0.2),eps=1.0e-3)

Arguments

Details

This is to calculate

$$
\Phi_l(x) = \frac{\int_0^x s^l e^{-s} ds}{x^{l+1}}, \quad l = 0, 1, 2.
$$

This function is well defined even when x=0. However, it is numerical chanllenging to calculate it when x is small. So when $|x| \le$ eps we approximate this function and the absolute error is eps⁵.

82 wlrcal words are seen to be a set of the se

Value

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

Examples

```
fun<-spf(x=seq(-1,1,by=0.2),eps=1.0e-3)
fun
```


Description

A utility function to calculate the weighted log-rank statistics and their varainces given the weights

Usage

```
wlrcal(n=10,te=c(1,2,3),tfix=2.0,dd1=c(1,0,1),dd0=c(0,1,0),r1=c(1,2,3),r0=c(1,2,3),
      weights=matrix(1,nrow=length(te),ncol=1),eps=1.0e-08)
```
Arguments

where the state of the stat

Details

More details

Value

Author(s)

Xiaodong Luo

Examples

```
lr<-wlrcal(n=10,te=c(1,2,3),tfix=2.0,dd1=c(1,0,1),dd0=c(0,1,0),r1=c(1,2,3),r0=c(1,2,3))
lr
```


Description

A function to calculate the weighted log-rank statistics and their varainces given the weights including log-rank, gehan, Tarone-Ware, Peto-Peto, mPeto-Peto and Fleming-Harrington

Usage

wlrcom(y,d,z,tfix=max(y),p=c(1),q=c(1),eps=1.0e-08)

Arguments

Details

V1:3/21/2018

84 wlrcom

Value

Author(s)

Xiaodong Luo

```
n<-1000
pi1<-0.5
taur<-2.8
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11<-c(1,0.5)r21<-c(0.5,0.8)
r31<-c(0.7,0.4)
r41<-r51<-r21
rc1<-c(0.5,0.6)
r10<-c(1,0.7)r20<-c(0.5,1)r30<-c(0.3,0.4)
r40<-r50<-r20
rc0<-c(0.2,0.4)
tchange<-c(0,1.873)
tcut < -2E<-T<-C<-z<-delta<-rep(0,n)
E<-rpwu(nr=n,u=u,ut=ut)$r
z<-rbinom(n,1,pi1)
n1 < -sum(z)n0<-sum(1-z)
C[z==1]<-rpwe(nr=n1,rate=rc1,tchange=tchange)$r
C[z==0]<-rpwe(nr=n0,rate=rc0,tchange=tchange)$r
T[z==1]<-rpwecx(nr=n1,rate1=r11,rate2=r21,rate3=r31,
                rate4=r41,rate5=r51,tchange=tchange,type=1)$r
T[z==0]<-rpwecx(nr=n0,rate1=r10,rate2=r20,rate3=r30,
                rate4=r40,rate5=r50,tchange=tchange,type=1)$r
y<-pmin(pmin(T,C),tcut-E)
y1<-pmin(C,tcut-E)
d <-rep(0,n);
d[T<=y]<-1
wlr4<-wlrcom(y=y,d=d,z=z,p=c(1,1),q=c(0,1))
wlr4
```
wlrutil *A utility function to calculate some common functions in contructing weights*

Description

A utility function to calculate some common functions in contructing weights

Usage

```
wlrutil(y=c(1,2,3),d=c(1,0,1),z=c(1,0,0),te=c(1,3),eps=1.0e-08)
```
Arguments

Details

More details

Value

Author(s)

Xiaodong Luo

```
ww<-wlrutil(y=c(1,2,3),d=c(1,0,1),z=c(1,0,0),te=c(1,3),eps=1.0e-08)
ww
```
Index

∗ conditional power cp, [6](#page-5-0) cpboundary, [7](#page-6-0) ∗ covariance rmstcov, [65](#page-64-0) ∗ crossover effect rmstpower, [68](#page-67-0) ∗ crossover pwecx, [37](#page-36-0) ∗ delayed treatment effect innercov, [14](#page-13-0) innervar, [16](#page-15-0) instudyfindt, [19](#page-18-0) ovbeta, [23](#page-22-1) overallcov, [26](#page-25-0) overallcovp1, [28](#page-27-0) overallcovp2, [31](#page-30-0) overallvar, [33](#page-32-0) pwecxpwufindt, [42](#page-41-0) pwecxpwuforvar, [44](#page-43-0) pwepower, [49](#page-48-0) pwepowereq, [52](#page-51-0) pwepowerfindt, [54](#page-53-0) pwepowerni, [57](#page-56-0) pwesim, [59](#page-58-0) rmstpower, [68](#page-67-0) rmstpowerfindt, [71](#page-70-0) rmstsim, [73](#page-72-0) ∗ distribution pwu, [61](#page-60-0) ∗ equivalence pwepowereq, [52](#page-51-0) ∗ hazard estimate hxbeta, [13](#page-12-0) ∗ mean difference of RMSTs rmstpowerfindt, [71](#page-70-0) ∗ mean difference rmstpower, [68](#page-67-0) ∗ non-inferiority

pwepowerni, [57](#page-56-0) ∗ overall hazard ratio ovbeta, [23](#page-22-1) pwecxpwuforvar, [44](#page-43-0) pwepowerfindt, [54](#page-53-0) pwesim, [59](#page-58-0) rmstsim, [73](#page-72-0) ∗ piecewise exponential distribution rmstpower, [68](#page-67-0) ∗ piecewise exponential fourhr, [11](#page-10-0) innercov, [14](#page-13-0) innervar, [16](#page-15-0) instudyfindt, [19](#page-18-0) ovbeta, [23](#page-22-1) overallcov, [26](#page-25-0) overallcovp1, [28](#page-27-0) overallcovp2, [31](#page-30-0) overallvar, [33](#page-32-0) PWEALL-package, [3](#page-2-0) pwecx, [37](#page-36-0) pwecxcens, [39](#page-38-0) pwecxpwu, [40](#page-39-0) pwecxpwufindt, [42](#page-41-0) pwecxpwuforvar, [44](#page-43-0) pwefv2, [46](#page-45-0) pwefvplus, [47](#page-46-0) pwepower, [49](#page-48-0) pwepowereq, [52](#page-51-0) pwepowerfindt, [54](#page-53-0) pwepowerni, [57](#page-56-0) pwesim, [59](#page-58-0) qpwe, [63](#page-62-1) rmstcov, [65](#page-64-0) rmstpowerfindt, [71](#page-70-0) rmstsim, [73](#page-72-0) rmstutil, [76](#page-75-0) rpwe, [77](#page-76-1) rpwecx, [79](#page-78-0)

INDEX 87

∗ piecewise exponetial pwe , [36](#page-35-1) ∗ piecewise uniform innercov , [14](#page-13-0) innervar , [16](#page-15-0) instudyfindt , [19](#page-18-0) ovbeta , [23](#page-22-1) overallcov , [26](#page-25-0) overallcovp1 , [28](#page-27-0) overallcovp2, [31](#page-30-0) overallvar , [33](#page-32-0) pwecxcens , [39](#page-38-0) pwecxpwu , [40](#page-39-0) pwecxpwufindt, [42](#page-41-0) pwecxpwuforvar , [44](#page-43-0) pwepower , [49](#page-48-0) pwepowereq , [52](#page-51-0) pwepowerfindt , [54](#page-53-0) pwepowerni , [57](#page-56-0) pwesim , [59](#page-58-0) pwu , [61](#page-60-0) qpwu , [64](#page-63-0) rmstpowerfindt , [71](#page-70-0) rmstsim , [73](#page-72-0) rpwu , [80](#page-79-0) ∗ power pwepower , [49](#page-48-0) pwepowereq , [52](#page-51-0) pwepowerni , [57](#page-56-0) rmstpowerfindt , [71](#page-70-0) ∗ quantiles qpwe , [63](#page-62-1) qpwu , [64](#page-63-0) ∗ random number generator pwecx , [37](#page-36-0) pwecxpwu, [40](#page-39-0) rpwe , [77](#page-76-1) rpwecx , [79](#page-78-0) rpwu , [80](#page-79-0) ∗ restricted mean survival times rmstcov , [65](#page-64-0) rmstutil , [76](#page-75-0) ∗ restricted mean survival time rmsth , [67](#page-66-0) rmstpower , [68](#page-67-0) ∗ simulation pwesim , [59](#page-58-0) rmstsim , [73](#page-72-0)

∗ smoothed estimate hxbeta , [13](#page-12-0) ∗ stopping boundary cpboundary , [7](#page-6-0) ∗ stopping probability cpstop , [9](#page-8-0) ∗ timeline for certain power pwepowerfindt , [54](#page-53-0) rmstpowerfindt , [71](#page-70-0) ∗ timeline instudyfindt , [19](#page-18-0) pwecxpwufindt, [42](#page-41-0) ∗ treatment crossover fourhr , [11](#page-10-0) innercov , [14](#page-13-0) innervar , [16](#page-15-0) instudyfindt , [19](#page-18-0) ovbeta , [23](#page-22-1) overallcov, 2<mark>6</mark> overallcovp1 , [28](#page-27-0) overallcovp2, [31](#page-30-0) overallvar , [33](#page-32-0) pwecxcens , [39](#page-38-0) pwecxpwu , [40](#page-39-0) pwecxpwufindt, [42](#page-41-0) pwecxpwuforvar , [44](#page-43-0) pwefvplus , [47](#page-46-0) pwepower , [49](#page-48-0) pwepowereq , [52](#page-51-0) pwepowerfindt , [54](#page-53-0) pwepowerni , [57](#page-56-0) pwesim , [59](#page-58-0) rmstcov , [65](#page-64-0) rmstpowerfindt , [71](#page-70-0) rmstsim , [73](#page-72-0) rmstutil , [76](#page-75-0) rpwecx , [79](#page-78-0) ∗ utility function spf , [81](#page-80-0) ∗ variance rmsth , [67](#page-66-0) rmstpower , [68](#page-67-0) rmstutil , [76](#page-75-0) ∗ various functions PWEALL-package, [3](#page-2-0) ∗ weighted log-rank wlrcal, <mark>[82](#page-81-0)</mark> wlrcom , [83](#page-82-0)

wlrutil, [85](#page-84-0) cp, [6,](#page-5-0) *[8,](#page-7-0) [9](#page-8-0)* cpboundary, *[7](#page-6-0)*, [7,](#page-6-0) *[9](#page-8-0)* cpstop, *[7,](#page-6-0) [8](#page-7-0)*, [9](#page-8-0) fourhr, [11](#page-10-0) hxbeta, [13](#page-12-0) innercov, [14](#page-13-0) innervar, *[16](#page-15-0)*, [16,](#page-15-0) *[18](#page-17-0)*, *[28](#page-27-0)*, *[30](#page-29-0)*, *[32](#page-31-0)*, *[35](#page-34-0)*, *[46](#page-45-0)*, *[51](#page-50-0)*, *[54](#page-53-0)*, *[56](#page-55-0)*, *[59](#page-58-0)*, *[61](#page-60-0)*, *[72](#page-71-0)* instudyfindt, [19,](#page-18-0) *[44](#page-43-0)* ovbeta, *[16](#page-15-0)*, *[18](#page-17-0)*, [23,](#page-22-1) *[28](#page-27-0)*, *[30](#page-29-0)*, *[32](#page-31-0)*, *[35](#page-34-0)*, *[46](#page-45-0)*, *[51](#page-50-0)*, *[54](#page-53-0)*, *[56](#page-55-0)*, *[59](#page-58-0)*, *[61](#page-60-0)*, *[72](#page-71-0)*, *[75](#page-74-0)* overallcov, [26](#page-25-0) overallcovp1, [28](#page-27-0) overallcovp2, [31](#page-30-0) overallvar, [33](#page-32-0) pwe, *[16](#page-15-0)*, *[18](#page-17-0)*, *[22](#page-21-0)*, *[25](#page-24-0)*, *[28](#page-27-0)*, *[30](#page-29-0)*, *[32](#page-31-0)*, *[35](#page-34-0)*, [36,](#page-35-1) *[44](#page-43-0)*, *[46](#page-45-0)*, *[51](#page-50-0)*, *[54](#page-53-0)*, *[56](#page-55-0)*, *[59](#page-58-0)*, *[61,](#page-60-0) [62](#page-61-0)*, *[72](#page-71-0)*, *[75](#page-74-0)* PWEALL *(*PWEALL-package*)*, [3](#page-2-0) PWEALL-package, [3](#page-2-0) pwecx, *[16](#page-15-0)*, *[18](#page-17-0)*, [37](#page-36-0) pwecxcens, [39](#page-38-0) pwecxpwu, [40](#page-39-0) pwecxpwufindt, *[22](#page-21-0)*, [42](#page-41-0) pwecxpwuforvar, [44](#page-43-0) pwefv2, [46](#page-45-0) pwefvplus, [47](#page-46-0) pwepower, [49,](#page-48-0) *[54](#page-53-0)*, *[59](#page-58-0)* pwepowereq, *[51](#page-50-0)*, [52,](#page-51-0) *[59](#page-58-0)* pwepowerfindt, [54](#page-53-0) pwepowerni, *[51](#page-50-0)*, *[54](#page-53-0)*, [57](#page-56-0) pwesim, [59](#page-58-0) pwu, [61](#page-60-0) qpwe, *[16](#page-15-0)*, *[18](#page-17-0)*, *[22](#page-21-0)*, *[25](#page-24-0)*, *[28](#page-27-0)*, *[30](#page-29-0)*, *[32](#page-31-0)*, *[35](#page-34-0)*, *[37](#page-36-0)*, *[44](#page-43-0)*, *[46](#page-45-0)*, *[51](#page-50-0)*, *[54](#page-53-0)*, *[56](#page-55-0)*, *[59](#page-58-0)*, *[61](#page-60-0)*, [63,](#page-62-1) *[72](#page-71-0)*, *[75](#page-74-0)* qpwu, [64](#page-63-0) rmstcov, [65](#page-64-0) rmsth, [67](#page-66-0) rmstpower, [68](#page-67-0) rmstpowerfindt, [71](#page-70-0) rmstsim, [73](#page-72-0) rmstutil, [76](#page-75-0)

```
rpwe, 12, 16, 18, 22, 25, 28, 30, 32, 35, 37, 38,
         40, 41, 44, 46, 47, 49, 51, 54, 56, 59,
         61, 72, 75, 77, 80, 81
rpwecx, 79
rpwu, 80
spf, 81
wlrcal, 82
wlrcom, 83
wlrutil, 85
```